0-1背包问题

哎嗨我来了

前置知识:DP

DP

DP的推理建立在一个数组上

DP也是分一维二维的,一维DP也就是只有两个状态的DP,二维则有三个状态(如有物品个数、背包容量,价值),其中两个做被拆分的对象,一个做状态下的值

背包问题

上面给出的那篇文章举的那个栗子就是典型的0-1背包问题,具体的拆分步骤已经给出,这里想说的是,0-1背包问题实际上就是把一些有价值有体积(或重量)一个容量给定的背包内(也可以是一个类似背包的东西),求可以装的最大值。

这时候就可以用DP求解,先观察,他可以分成规模更小的问题,符合重叠子问题,至于最优子结构嘛......这个有点难证明,先放一放,他为什么没有后效性,别问我,我也不知道看上面给出的文章你就知道了。

有人就问了:"那么既然是动态规划,那肯定就比枚举要快,但是说了那么一大篇,我还不知道它是怎么推的呢?"别急别急,这就说。

动规有一个状态转移方程,这就是动态规划的核心,没它不行,其他代码只是浮云为了迎合题目要求做的一些加工而已,但是,状态转移方程也会变欧~最长不下降子序列有它的转移方程,最长公共子序列也有一个转移方程,同理,背包问题也有他的转移方程,而且,就算它是背包问题的转移方程,它也会根据不同的题目的条件摇身一变(当然不会变得太离谱),变成一个改装的核心。

那么背包问题的转移方程的改装也是建立在模板背包的转移方程的基础上的改装,所以模板还是要学习滴~

废话不多说了,先看看背包问题的"三元素":重量(背包重量),价值,物品个数,因为求的是价值,所以重量和物品个数做被分成子问题的对象,价值做状态下的值,不多说了,现在就上代码。

就知道你们想要这个

cpp 复制代码
#include<bits/stdc++.h>
using namespace std;
int n,m,dp[1001][1001],v[1001],h[1001];//dp[i][j]表示在前i个物品中选出一些装入容量为j的背包里可获得的物品最大值 
int main(){
	cin>>n>>m;
	for(int i=1;i<=m;i++){
		cin>>h[i]>>v[i];//输入 
	}
	for(int i=1;i<=m;i++){//枚举所有物品 
		for(int j=1;j<=n;j++){//枚举背包容量 
			if(h[i]<=j){//装得下的情况
				dp[i][j]=max(dp[i-1][j],dp[i-1][j-h[i]]+v[i]);//要么就装,要么就不装,不装的情况就是直接照搬上一个物品的最大值,装的话就是找到减去当前物品重量的背包的价值最大值加上当前物品的价值 
			}
			else dp[i][j]=dp[i-1][j];//装不下就只能照搬上一个物品的最大值 
		}
	}
	cout<<dp[m][n];
}
相关推荐
AC使者1 分钟前
#B1630. 数字走向4
算法
冠位观测者5 分钟前
【Leetcode 每日一题】2545. 根据第 K 场考试的分数排序
数据结构·算法·leetcode
古希腊掌管学习的神1 小时前
[搜广推]王树森推荐系统笔记——曝光过滤 & Bloom Filter
算法·推荐算法
qystca1 小时前
洛谷 P1706 全排列问题 C语言
算法
浊酒南街1 小时前
决策树(理论知识1)
算法·决策树·机器学习
就爱学编程1 小时前
重生之我在异世界学编程之C语言小项目:通讯录
c语言·开发语言·数据结构·算法
学术头条1 小时前
清华、智谱团队:探索 RLHF 的 scaling laws
人工智能·深度学习·算法·机器学习·语言模型·计算语言学
Schwertlilien2 小时前
图像处理-Ch4-频率域处理
算法
IT猿手2 小时前
最新高性能多目标优化算法:多目标麋鹿优化算法(MOEHO)求解TP1-TP10及工程应用---盘式制动器设计,提供完整MATLAB代码
开发语言·深度学习·算法·机器学习·matlab·多目标算法
__lost2 小时前
MATLAB直接推导函数的导函数和积分形式(具体方法和用例)
数学·算法·matlab·微积分·高等数学