Codeforces Round 975 (Div. 1) C. Tree Pruning

C. Tree Pruning

time limit per test: 3 seconds

memory limit per test: 256 megabytes

t+pazolite, ginkiha, Hommarju - Paved Garden


You are given a tree with n nodes, rooted at node 1. In this problem, a leaf is a non-root node with degree 1.

In one operation, you can remove a leaf and the edge adjacent to it (possibly, new leaves appear). What is the minimum number of operations that you have to perform to get a tree, also rooted at node 1, where all the leaves are at the same distance from the root?

Input

Each test contains multiple test cases. The first line contains the number of test cases t (1≤t≤10^4). The description of the test cases follows.

The first line of each test case contains a single integer n (3≤n≤5⋅10^5) --- the number of nodes.

Each of the next n−1 lines contains two integers u, v (1≤u,v≤n, u≠v), describing an edge that connects u and v. It is guaranteed that the given edges form a tree.

It is guaranteed that the sum of n over all test cases does not exceed 5⋅10^5.

Output

For each test case, output a single integer: the minimum number of operations needed to achieve your goal.

Example

Input

3

7

1 2

1 3

2 4

2 5

4 6

4 7

7

1 2

1 3

1 4

2 5

3 6

5 7

15

12 9

1 6

6 14

9 11

8 7

3 5

13 5

6 10

13 15

13 6

14 12

7 2

8 1

1 4

Output

复制代码
2
2
5

Note

In the first two examples, the tree is as follows:

In the first example, by removing edges (1,3) and (2,5), the resulting tree has all leaves (nodes 6 and 7) at the same distance from the root (node 1), which is 3. The answer is 2, as it is the minimum number of edges that need to be removed to achieve the goal.

In the second example, removing edges (1,4) and (5,7) results in a tree where all leaves (nodes 4 and 5) are at the same distance from the root (node 1), which is 2.

【思路分析】

树上前后缀。删节点有两个case,case1:直接将所有长链删到某一长度;case2:存在若干短链需要全删,其它长链删到某一长度。显然我们不能简单推导保留链的长度是多少,因此从1到n枚举深度,维护每个节点的maxDeep,预处理树上前后缀即可。时间复杂度

本题也可以采用重链剖分+维护更新来做,实现比较复杂,暂不讨论。

cpp 复制代码
#include<bits/stdc++.h>

#define i64 long long

using namespace std;

const int N = 5e5 + 5;

vector<i64> G[N];
i64 mxd = LLONG_MIN / 2, suf[N], pre[N], mxDep[N];

void dfs(i64 i, i64 dep, i64 fa){
    suf[dep]++;
    mxDep[i] = dep;
    if (G[i].size() == 1 && G[i][0] == fa) {
        pre[dep]++;
        mxd = max(dep, mxd);
        return;
    }
    for (const auto &item: G[i]) {
        if (item != fa) {
            dfs(item, dep+1, i);
            mxDep[i] = max(mxDep[item], mxDep[i]);
        }
    }
    pre[mxDep[i]]++;
}

void solve() {
    mxd = LLONG_MIN / 2;
    i64 n;
    cin>>n;
    for (int i = 0; i < n + 2; ++i) {
        pre[i] = 0;
        suf[i] = 0;
        mxDep[i] = 0;
        G[i].clear();
    }
    for (int i = 0; i < n - 1; ++i) {
        i64 u,v;
        cin>>u>>v;
        G[u].emplace_back(v);
        G[v].emplace_back(u);
    }
    dfs(1,0,-1);
    pre[0] = 0;
    for (int i = 1; i <= mxd; ++i) {
        pre[i] += pre[i - 1];
    }
    for (int i = mxd - 1; i >= 1; --i) {
        suf[i] += suf[i + 1];
    }
    i64 res = LLONG_MAX / 2;
    for (int i = mxd; i >= 1; --i) {
        res = min(res, suf[i + 1] + pre[i - 1]);
    }
    cout<<res<<endl;
}

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    cout.tie(nullptr);
    int t = 1;
    cin >> t;
    while (t--) {
        solve();
    }
    return 0;
}
相关推荐
猫头虎8 小时前
如何排查并解决项目启动时报错Error encountered while processing: java.io.IOException: closed 的问题
java·开发语言·jvm·spring boot·python·开源·maven
YUJIANYUE8 小时前
PHP纹路验证码
开发语言·php
仟濹8 小时前
【Java基础】多态 | 打卡day2
java·开发语言
孞㐑¥8 小时前
算法——BFS
开发语言·c++·经验分享·笔记·算法
Re.不晚8 小时前
JAVA进阶之路——无奖问答挑战2
java·开发语言
八零后琐话8 小时前
干货:程序员必备性能分析工具——Arthas火焰图
开发语言·python
3GPP仿真实验室8 小时前
【MATLAB源码】CORDIC-QR :基于Cordic硬件级矩阵QR分解
开发语言·matlab·矩阵
知南x9 小时前
【Ascend C系列课程(高级)】(1) 算子调试+调优
c语言·开发语言
忆~遂愿9 小时前
GE 引擎与算子版本控制:确保前向兼容性与图重写策略的稳定性
大数据·开发语言·docker
Ro Jace9 小时前
计算机专业基础教材
java·开发语言