Codeforces Round 975 (Div. 1) C. Tree Pruning

C. Tree Pruning

time limit per test: 3 seconds

memory limit per test: 256 megabytes

t+pazolite, ginkiha, Hommarju - Paved Garden


You are given a tree with n nodes, rooted at node 1. In this problem, a leaf is a non-root node with degree 1.

In one operation, you can remove a leaf and the edge adjacent to it (possibly, new leaves appear). What is the minimum number of operations that you have to perform to get a tree, also rooted at node 1, where all the leaves are at the same distance from the root?

Input

Each test contains multiple test cases. The first line contains the number of test cases t (1≤t≤10^4). The description of the test cases follows.

The first line of each test case contains a single integer n (3≤n≤5⋅10^5) --- the number of nodes.

Each of the next n−1 lines contains two integers u, v (1≤u,v≤n, u≠v), describing an edge that connects u and v. It is guaranteed that the given edges form a tree.

It is guaranteed that the sum of n over all test cases does not exceed 5⋅10^5.

Output

For each test case, output a single integer: the minimum number of operations needed to achieve your goal.

Example

Input

3

7

1 2

1 3

2 4

2 5

4 6

4 7

7

1 2

1 3

1 4

2 5

3 6

5 7

15

12 9

1 6

6 14

9 11

8 7

3 5

13 5

6 10

13 15

13 6

14 12

7 2

8 1

1 4

Output

复制代码
2
2
5

Note

In the first two examples, the tree is as follows:

In the first example, by removing edges (1,3) and (2,5), the resulting tree has all leaves (nodes 6 and 7) at the same distance from the root (node 1), which is 3. The answer is 2, as it is the minimum number of edges that need to be removed to achieve the goal.

In the second example, removing edges (1,4) and (5,7) results in a tree where all leaves (nodes 4 and 5) are at the same distance from the root (node 1), which is 2.

【思路分析】

树上前后缀。删节点有两个case,case1:直接将所有长链删到某一长度;case2:存在若干短链需要全删,其它长链删到某一长度。显然我们不能简单推导保留链的长度是多少,因此从1到n枚举深度,维护每个节点的maxDeep,预处理树上前后缀即可。时间复杂度

本题也可以采用重链剖分+维护更新来做,实现比较复杂,暂不讨论。

cpp 复制代码
#include<bits/stdc++.h>

#define i64 long long

using namespace std;

const int N = 5e5 + 5;

vector<i64> G[N];
i64 mxd = LLONG_MIN / 2, suf[N], pre[N], mxDep[N];

void dfs(i64 i, i64 dep, i64 fa){
    suf[dep]++;
    mxDep[i] = dep;
    if (G[i].size() == 1 && G[i][0] == fa) {
        pre[dep]++;
        mxd = max(dep, mxd);
        return;
    }
    for (const auto &item: G[i]) {
        if (item != fa) {
            dfs(item, dep+1, i);
            mxDep[i] = max(mxDep[item], mxDep[i]);
        }
    }
    pre[mxDep[i]]++;
}

void solve() {
    mxd = LLONG_MIN / 2;
    i64 n;
    cin>>n;
    for (int i = 0; i < n + 2; ++i) {
        pre[i] = 0;
        suf[i] = 0;
        mxDep[i] = 0;
        G[i].clear();
    }
    for (int i = 0; i < n - 1; ++i) {
        i64 u,v;
        cin>>u>>v;
        G[u].emplace_back(v);
        G[v].emplace_back(u);
    }
    dfs(1,0,-1);
    pre[0] = 0;
    for (int i = 1; i <= mxd; ++i) {
        pre[i] += pre[i - 1];
    }
    for (int i = mxd - 1; i >= 1; --i) {
        suf[i] += suf[i + 1];
    }
    i64 res = LLONG_MAX / 2;
    for (int i = mxd; i >= 1; --i) {
        res = min(res, suf[i + 1] + pre[i - 1]);
    }
    cout<<res<<endl;
}

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    cout.tie(nullptr);
    int t = 1;
    cin >> t;
    while (t--) {
        solve();
    }
    return 0;
}
相关推荐
fsnine5 分钟前
Python图形化界面——pyqt5教程
开发语言·python·qt
嵌入式-老费13 分钟前
Easyx图形库应用(和lua结合使用)
开发语言·lua
AsiaLYF14 分钟前
kotlin中MutableStateFlow和MutableSharedFlow的区别是什么?
android·开发语言·kotlin
yuuki23323321 分钟前
【C语言】文件操作(附源码与图片)
c语言·后端
Asuncion00725 分钟前
Docker核心揭秘:轻量级虚拟化的革命
服务器·开发语言·docker·云原生
深思慎考1 小时前
RabbitMQ 入门:基于 AMQP-CPP 的 C++ 实践指南与二次封装
开发语言·c++·分布式·rabbitmq·api
catchadmin1 小时前
PHP8.5 的新 URI 扩展
开发语言·后端·php
秦.赢渠梁1 小时前
各种通信(三):GPS模块数据解析
c语言
似水流年 光阴已逝1 小时前
从Excel姓名匹配案例学Python:由点及面的系统化学习指南
开发语言·python·excel
重生之我要当java大帝1 小时前
java微服务-尚医通-管理平台前端搭建-医院设置管理-4
java·开发语言·前端