Codeforces Round 975 (Div. 1) C. Tree Pruning

C. Tree Pruning

time limit per test: 3 seconds

memory limit per test: 256 megabytes

t+pazolite, ginkiha, Hommarju - Paved Garden


You are given a tree with n nodes, rooted at node 1. In this problem, a leaf is a non-root node with degree 1.

In one operation, you can remove a leaf and the edge adjacent to it (possibly, new leaves appear). What is the minimum number of operations that you have to perform to get a tree, also rooted at node 1, where all the leaves are at the same distance from the root?

Input

Each test contains multiple test cases. The first line contains the number of test cases t (1≤t≤10^4). The description of the test cases follows.

The first line of each test case contains a single integer n (3≤n≤5⋅10^5) --- the number of nodes.

Each of the next n−1 lines contains two integers u, v (1≤u,v≤n, u≠v), describing an edge that connects u and v. It is guaranteed that the given edges form a tree.

It is guaranteed that the sum of n over all test cases does not exceed 5⋅10^5.

Output

For each test case, output a single integer: the minimum number of operations needed to achieve your goal.

Example

Input

3

7

1 2

1 3

2 4

2 5

4 6

4 7

7

1 2

1 3

1 4

2 5

3 6

5 7

15

12 9

1 6

6 14

9 11

8 7

3 5

13 5

6 10

13 15

13 6

14 12

7 2

8 1

1 4

Output

复制代码
2
2
5

Note

In the first two examples, the tree is as follows:

In the first example, by removing edges (1,3) and (2,5), the resulting tree has all leaves (nodes 6 and 7) at the same distance from the root (node 1), which is 3. The answer is 2, as it is the minimum number of edges that need to be removed to achieve the goal.

In the second example, removing edges (1,4) and (5,7) results in a tree where all leaves (nodes 4 and 5) are at the same distance from the root (node 1), which is 2.

【思路分析】

树上前后缀。删节点有两个case,case1:直接将所有长链删到某一长度;case2:存在若干短链需要全删,其它长链删到某一长度。显然我们不能简单推导保留链的长度是多少,因此从1到n枚举深度,维护每个节点的maxDeep,预处理树上前后缀即可。时间复杂度

本题也可以采用重链剖分+维护更新来做,实现比较复杂,暂不讨论。

cpp 复制代码
#include<bits/stdc++.h>

#define i64 long long

using namespace std;

const int N = 5e5 + 5;

vector<i64> G[N];
i64 mxd = LLONG_MIN / 2, suf[N], pre[N], mxDep[N];

void dfs(i64 i, i64 dep, i64 fa){
    suf[dep]++;
    mxDep[i] = dep;
    if (G[i].size() == 1 && G[i][0] == fa) {
        pre[dep]++;
        mxd = max(dep, mxd);
        return;
    }
    for (const auto &item: G[i]) {
        if (item != fa) {
            dfs(item, dep+1, i);
            mxDep[i] = max(mxDep[item], mxDep[i]);
        }
    }
    pre[mxDep[i]]++;
}

void solve() {
    mxd = LLONG_MIN / 2;
    i64 n;
    cin>>n;
    for (int i = 0; i < n + 2; ++i) {
        pre[i] = 0;
        suf[i] = 0;
        mxDep[i] = 0;
        G[i].clear();
    }
    for (int i = 0; i < n - 1; ++i) {
        i64 u,v;
        cin>>u>>v;
        G[u].emplace_back(v);
        G[v].emplace_back(u);
    }
    dfs(1,0,-1);
    pre[0] = 0;
    for (int i = 1; i <= mxd; ++i) {
        pre[i] += pre[i - 1];
    }
    for (int i = mxd - 1; i >= 1; --i) {
        suf[i] += suf[i + 1];
    }
    i64 res = LLONG_MAX / 2;
    for (int i = mxd; i >= 1; --i) {
        res = min(res, suf[i + 1] + pre[i - 1]);
    }
    cout<<res<<endl;
}

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    cout.tie(nullptr);
    int t = 1;
    cin >> t;
    while (t--) {
        solve();
    }
    return 0;
}
相关推荐
侃侃_天下18 小时前
最终的信号类
开发语言·c++·算法
echoarts18 小时前
Rayon Rust中的数据并行库入门教程
开发语言·其他·算法·rust
Aomnitrix19 小时前
知识管理新范式——cpolar+Wiki.js打造企业级分布式知识库
开发语言·javascript·分布式
每天回答3个问题19 小时前
UE5C++编译遇到MSB3073
开发语言·c++·ue5
伍哥的传说19 小时前
Vite Plugin PWA – 零配置构建现代渐进式Web应用
开发语言·前端·javascript·web app·pwa·service worker·workbox
小莞尔20 小时前
【51单片机】【protues仿真】基于51单片机的篮球计时计分器系统
c语言·stm32·单片机·嵌入式硬件·51单片机
小莞尔20 小时前
【51单片机】【protues仿真】 基于51单片机八路抢答器系统
c语言·开发语言·单片机·嵌入式硬件·51单片机
liujing1023292920 小时前
Day03_刷题niuke20250915
c语言
我是菜鸟0713号20 小时前
Qt 中 OPC UA 通讯实战
开发语言·qt
JCBP_20 小时前
QT(4)
开发语言·汇编·c++·qt·算法