Codeforces Round 975 (Div. 1) C. Tree Pruning

C. Tree Pruning

time limit per test: 3 seconds

memory limit per test: 256 megabytes

t+pazolite, ginkiha, Hommarju - Paved Garden


You are given a tree with n nodes, rooted at node 1. In this problem, a leaf is a non-root node with degree 1.

In one operation, you can remove a leaf and the edge adjacent to it (possibly, new leaves appear). What is the minimum number of operations that you have to perform to get a tree, also rooted at node 1, where all the leaves are at the same distance from the root?

Input

Each test contains multiple test cases. The first line contains the number of test cases t (1≤t≤10^4). The description of the test cases follows.

The first line of each test case contains a single integer n (3≤n≤5⋅10^5) --- the number of nodes.

Each of the next n−1 lines contains two integers u, v (1≤u,v≤n, u≠v), describing an edge that connects u and v. It is guaranteed that the given edges form a tree.

It is guaranteed that the sum of n over all test cases does not exceed 5⋅10^5.

Output

For each test case, output a single integer: the minimum number of operations needed to achieve your goal.

Example

Input

3

7

1 2

1 3

2 4

2 5

4 6

4 7

7

1 2

1 3

1 4

2 5

3 6

5 7

15

12 9

1 6

6 14

9 11

8 7

3 5

13 5

6 10

13 15

13 6

14 12

7 2

8 1

1 4

Output

复制代码
2
2
5

Note

In the first two examples, the tree is as follows:

In the first example, by removing edges (1,3) and (2,5), the resulting tree has all leaves (nodes 6 and 7) at the same distance from the root (node 1), which is 3. The answer is 2, as it is the minimum number of edges that need to be removed to achieve the goal.

In the second example, removing edges (1,4) and (5,7) results in a tree where all leaves (nodes 4 and 5) are at the same distance from the root (node 1), which is 2.

【思路分析】

树上前后缀。删节点有两个case,case1:直接将所有长链删到某一长度;case2:存在若干短链需要全删,其它长链删到某一长度。显然我们不能简单推导保留链的长度是多少,因此从1到n枚举深度,维护每个节点的maxDeep,预处理树上前后缀即可。时间复杂度

本题也可以采用重链剖分+维护更新来做,实现比较复杂,暂不讨论。

cpp 复制代码
#include<bits/stdc++.h>

#define i64 long long

using namespace std;

const int N = 5e5 + 5;

vector<i64> G[N];
i64 mxd = LLONG_MIN / 2, suf[N], pre[N], mxDep[N];

void dfs(i64 i, i64 dep, i64 fa){
    suf[dep]++;
    mxDep[i] = dep;
    if (G[i].size() == 1 && G[i][0] == fa) {
        pre[dep]++;
        mxd = max(dep, mxd);
        return;
    }
    for (const auto &item: G[i]) {
        if (item != fa) {
            dfs(item, dep+1, i);
            mxDep[i] = max(mxDep[item], mxDep[i]);
        }
    }
    pre[mxDep[i]]++;
}

void solve() {
    mxd = LLONG_MIN / 2;
    i64 n;
    cin>>n;
    for (int i = 0; i < n + 2; ++i) {
        pre[i] = 0;
        suf[i] = 0;
        mxDep[i] = 0;
        G[i].clear();
    }
    for (int i = 0; i < n - 1; ++i) {
        i64 u,v;
        cin>>u>>v;
        G[u].emplace_back(v);
        G[v].emplace_back(u);
    }
    dfs(1,0,-1);
    pre[0] = 0;
    for (int i = 1; i <= mxd; ++i) {
        pre[i] += pre[i - 1];
    }
    for (int i = mxd - 1; i >= 1; --i) {
        suf[i] += suf[i + 1];
    }
    i64 res = LLONG_MAX / 2;
    for (int i = mxd; i >= 1; --i) {
        res = min(res, suf[i + 1] + pre[i - 1]);
    }
    cout<<res<<endl;
}

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    cout.tie(nullptr);
    int t = 1;
    cin >> t;
    while (t--) {
        solve();
    }
    return 0;
}
相关推荐
Eiceblue9 分钟前
【免费.NET方案】CSV到PDF与DataTable的快速转换
开发语言·pdf·c#·.net
m0_5557629041 分钟前
Matlab 频谱分析 (Spectral Analysis)
开发语言·matlab
学不动CV了1 小时前
ARM单片机启动流程(二)(详细解析)
c语言·arm开发·stm32·单片机·51单片机
浪裡遊2 小时前
React Hooks全面解析:从基础到高级的实用指南
开发语言·前端·javascript·react.js·node.js·ecmascript·php
lzb_kkk2 小时前
【C++】C++四种类型转换操作符详解
开发语言·c++·windows·1024程序员节
好开心啊没烦恼3 小时前
Python 数据分析:numpy,说人话,说说数组维度。听故事学知识点怎么这么容易?
开发语言·人工智能·python·数据挖掘·数据分析·numpy
猫猫的小茶馆3 小时前
【STM32】通用定时器基本原理
c语言·stm32·单片机·嵌入式硬件·mcu·51单片机
简佐义的博客3 小时前
破解非模式物种GO/KEGG注释难题
开发语言·数据库·后端·oracle·golang
程序员爱钓鱼3 小时前
【无标题】Go语言中的反射机制 — 元编程技巧与注意事项
开发语言·qt