订阅ROS2中相机的相关话题并保存RGB、深度和点云图

系统 :Ubuntu22.04
ROS2版本:ROS2 humble

1.订阅ROS2中相机的相关话题并保存RGB图、深度图和点云图

bash 复制代码
ros2 topic list

/stellar_1/rgb/image_raw
/camera/depth/image_raw
/stellar_1/points2

CMakeLists.txt

cpp 复制代码
cmake_minimum_required(VERSION 3.15)
project(bag_to_image)

if(CMAKE_COMPILER_IS_GNUCXX OR CMAKE_CXX_COMPILER_ID MATCHES "Clang")
  add_compile_options(-Wall -Wextra -Wpedantic)
endif()

# find dependencies
find_package(ament_cmake REQUIRED)
find_package(rclcpp REQUIRED)
find_package(sensor_msgs REQUIRED)
find_package(cv_bridge REQUIRED)
find_package(OpenCV REQUIRED)
# uncomment the following section in order to fill in
# further dependencies manually.
# find_package(<dependency> REQUIRED)

add_executable(bag_to_image_node src/bag_to_image_node.cpp)

# ROS2中指定节点或库的依赖项
ament_target_dependencies(bag_to_image_node rclcpp) # 核心C++客户端库,旨在简化开发和实现机器人应用程序
ament_target_dependencies(bag_to_image_node sensor_msgs) # 消息包,提供了一系列标准化的消息类型,用于传输来自各种传感器的数据
ament_target_dependencies(bag_to_image_node cv_bridge) # 用于连接ROS与OpenCV,提供在ROS消息格式与OpenCV图像格式之间的转换
ament_target_dependencies(bag_to_image_node OpenCV)

install(TARGETS
    bag_to_image_node
    DESTINATION lib/${PROJECT_NAME})

if(BUILD_TESTING)
  find_package(ament_lint_auto REQUIRED)
  set(ament_cmake_copyright_FOUND TRUE)
  set(ament_cmake_cpplint_FOUND TRUE)
  ament_lint_auto_find_test_dependencies()
endif()

ament_package()

bag_to_image_node.cpp

cpp 复制代码
#include <rclcpp/rclcpp.hpp>
#include <sensor_msgs/msg/image.hpp>
#include <sensor_msgs/msg/point_cloud2.hpp>
#include <cv_bridge/cv_bridge.h>
#include <opencv2/opencv.hpp>
#include <filesystem>
#include <fstream>
#include <queue>

class ImageSaver : public rclcpp::Node
{
public:
    ImageSaver() : Node("image_saver"), frame_count(0)
    {
        // 新建RGB图像、深度图像、点云图像文件夹
        std::filesystem::create_directories("rgb_images");
        std::filesystem::create_directories("depth_images");
        std::filesystem::create_directories("point_clouds");

        // 订阅话题 
        rgb_subscriber = this->create_subscription<sensor_msgs::msg::Image>(
            "/stellar_1/rgb/image_raw",
            10,
            std::bind(&ImageSaver::rgb_callback, this, std::placeholders::_1));

        depth_subscriber = this->create_subscription<sensor_msgs::msg::Image>(
            "/camera/depth/image_raw",
            10,
            std::bind(&ImageSaver::depth_callback, this, std::placeholders::_1));

        point_cloud_subscriber = this->create_subscription<sensor_msgs::msg::PointCloud2>(
            "/stellar_1/points2",
            10,
            std::bind(&ImageSaver::point_cloud_callback, this, std::placeholders::_1));
    }

private:
    std::queue<sensor_msgs::msg::Image::SharedPtr> rgb_queue;
    std::queue<sensor_msgs::msg::Image::SharedPtr> depth_queue;

    void rgb_callback(const sensor_msgs::msg::Image::SharedPtr msg)
    {
        rgb_queue.push(msg);
        process_frames();
    }

    void depth_callback(const sensor_msgs::msg::Image::SharedPtr msg)
    {
        depth_queue.push(msg);
        process_frames();
    }

    void point_cloud_callback(const sensor_msgs::msg::PointCloud2::SharedPtr msg)
    {
        // 保存点云图为.bin格式
        std::ofstream outfile("point_clouds/frame_" + std::to_string(frame_count) + ".bin", std::ios::binary);
        outfile.write(reinterpret_cast<const char *>(msg->data.data()), msg->data.size());
        outfile.close();
        frame_count++;
        process_frames(); // Check if we can process frames after saving point cloud
    }

    void process_frames()
    {
        while (!rgb_queue.empty() && !depth_queue.empty() && frame_count > 0) {
            auto rgb_msg   = rgb_queue.front();
            auto depth_msg = depth_queue.front();

            // 计算时间戳差值
            int64_t rgb_time   = rgb_msg->header.stamp.sec * 1e9 + rgb_msg->header.stamp.nanosec;
            int64_t depth_time = depth_msg->header.stamp.sec * 1e9 + depth_msg->header.stamp.nanosec;

            // 检查时间戳是否足够接近
            if (std::abs(rgb_time - depth_time) < 100000000) { // 100 ms
                cv_bridge::CvImagePtr cv_rgb_ptr = cv_bridge::toCvCopy(rgb_msg, sensor_msgs::image_encodings::BGR8);
                cv::imwrite("rgb_images/frame_" + std::to_string(frame_count) + ".png", cv_rgb_ptr->image);

				// TYPE_32FC1:
				// 32F:表示每个元素是 32 位(4 字节)浮点数(float)。
				// C1:表示单通道(Channel 1),即每个像素只有一个值。常用于灰度图像或单通道浮点数据。
				// TYPE_16UC1:
				// 16U:表示每个元素是 16 位(2 字节)无符号整数(unsigned int)。
				// C1:同样表示单通道,即每个像素只有一个值。常用于灰度图像或单通道整数数据,通常用于深度图等场景。
                cv_bridge::CvImagePtr cv_depth_ptr =
                    cv_bridge::toCvCopy(depth_msg, sensor_msgs::image_encodings::TYPE_16UC1);
                cv::imwrite("depth_images/frame_" + std::to_string(frame_count) + ".png", cv_depth_ptr->image);

                rgb_queue.pop();
                depth_queue.pop();
            } else if (rgb_time < depth_time) {
                rgb_queue.pop(); // 移除旧的 RGB 消息
            } else {
                depth_queue.pop(); // 移除旧的深度消息
            }
        }
    }

    rclcpp::Subscription<sensor_msgs::msg::Image>::SharedPtr rgb_subscriber;
    rclcpp::Subscription<sensor_msgs::msg::Image>::SharedPtr depth_subscriber;
    rclcpp::Subscription<sensor_msgs::msg::PointCloud2>::SharedPtr point_cloud_subscriber;
    int frame_count;
};

int main(int argc, char **argv)
{
    std::cout << "bag to image node start.." << std::endl;
    rclcpp::init(argc, argv);
    rclcpp::spin(std::make_shared<ImageSaver>());
    rclcpp::shutdown();

    return 0;
}

运行:

bash 复制代码
source install/setup.bash
ros2 run bag_to_image bag_to_image_node

2.将点云图.bin格式转换为.pcd格式

cpp 复制代码
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/visualization/cloud_viewer.h>
#include <iostream>
#include <thread>

// 将点云图.bin转换为.pcd
void convert_bin_to_pcd(const std::string &bin_file, const std::string &pcd_file)
{
    // 读取二进制点云数据
    std::ifstream infile(bin_file, std::ios::binary);
    if (!infile) {
        std::cerr << "Error opening binary file!" << std::endl;
        return;
    }

    pcl::PointCloud<pcl::PointXYZ> cloud;
    pcl::PointXYZ point;

    // 假设每个点包含x, y, z坐标
    while (infile.read(reinterpret_cast<char *>(&point), sizeof(pcl::PointXYZ))) {
        cloud.points.push_back(point);
    }
    cloud.width  = cloud.points.size();
    cloud.height = 1; // 单个点云

    infile.close();

    // 保存为 PCD 文件
    pcl::io::savePCDFileASCII(pcd_file, cloud);
    std::cout << "Converted to PCD file: " << pcd_file << std::endl;
}

int main(int argc, char **argv)
{
    convert_bin_to_pcd("frame_0.bin", "frame_0.pcd");

    return 0;
}
相关推荐
悠哉悠哉愿意2 天前
【ROS2学习笔记】URDF 机器人建模
笔记·学习·机器人·ros2
悠哉悠哉愿意3 天前
【ROS2学习笔记】 TF 坐标系
笔记·学习·ros2
悠哉悠哉愿意3 天前
【ROS2学习笔记】RViz 三维可视化
笔记·学习·机器人·ros2
悠哉悠哉愿意3 天前
【ROS2学习笔记】分布式通信
笔记·学习·ros2
悠哉悠哉愿意4 天前
【ROS2学习笔记】rqt 模块化可视化工具
笔记·学习·机器人·ros2
悠哉悠哉愿意4 天前
【ROS2学习笔记】Gazebo 仿真与 XACRO 模型
笔记·学习·机器人·ros2
悠哉悠哉愿意4 天前
【ROS2学习笔记】节点篇:ROS 2编程基础
笔记·学习·ros2
悠哉悠哉愿意4 天前
【ROS2学习笔记】话题通信篇:话题通信项目实践——系统状态监测与可视化工具
笔记·学习·ros2
悠哉悠哉愿意5 天前
【ROS2学习笔记】话题通信篇:python话题订阅与发布
笔记·学习·ros2
悠哉悠哉愿意6 天前
【ROS2学习笔记】服务
开发语言·笔记·学习·ros2