[论文笔记]SGPT: GPT Sentence Embeddings for Semantic Search

引言

解码器Transformer的规模不断壮大,轻松达到千亿级参数。同时由于该规模,基于提示或微调在各种NLP任务上达到SOTA结果。但目前为止解码器Transformer还无法应用在语义搜索或语句嵌入上。

为了简单,下文中以翻译的口吻记录,比如替换"作者"为"我们"。

作者提出了SGPT方法来解决这一问题,代码开源在 https://github.com/Muennighoff/sgpt

1. 总体介绍

现阶段主要依赖于类似BERT的仅编码器Transformer编码句嵌入以提供语义搜索。因为目前尚未清楚如何从解码器中提取语义嵌入。但这种做法的好处是明显的:

  • 性能 解码器的参数量巨大,这有可能产生SOTA结果;
  • 节省计算 只需要维护解码器架构,只训练一个大规模解码器并将其重用于搜索可以节省成本;

图1: 给定一个查询 q q q,文档 d 1 − 3 d_{1-3} d1−3,SGPT通过分数 s 1 − 3 s_{1-3} s1−3对文档进行排序。(a)Cross-Encoder拼接查询和文档然后一起编码。分数是对数概率。(b)Bi-Encoder分别对查询和文档进行编码,生成的文档向量 v 1 − 3 v_{1-3} v1−3可以缓存起来然后可以在新查询进来的时刻 t c t_c tc被访问。分数是预先相似度。

在本篇工作中,我们提出SGPT将仅解码器应用于语义搜索并提取有语义的句子嵌入。区分四种设置:Cross-Encoder、Bi-Encoder、对称以及非对称。

2. 相关工作

Cross-Encoder同时对查询和文档进行编码。

Bi-Encoder分别对查询和文档进行编码。有研究者提出了一个基于GPT的Bi-Encoder cpt-text。

Cross-Encoder往往优于Bi-Encoder,但速度较慢。

非对称搜索意味着查询和文档不可互换。

对称搜索意味着查询和文档可以互换。

3. SGPT Cross-Encoder

3.1 非对称搜索

给定查询 q q q和文档语料库 D D D,对最有可能的文档 d ∗ d^* d∗感兴趣,使用贝叶斯理论可以表示为:
d ∗ = arg ⁡ max ⁡ d ∈ D P ( d ∣ q ) = arg ⁡ max ⁡ d ∈ D P ( q ∣ d ) P ( d ) P ( q ) = arg ⁡ max ⁡ d ∈ D P ( q ∣ d ) P ( d ) (1) d^* = \arg \max_{d \in D}P(d|q) = \arg \max_{d\in D} \frac{P(q|d)P(d)}{P(q)} = \arg \max _{d \in D} P(q|d)P(d) \tag 1 d∗=argd∈DmaxP(d∣q)=argd∈DmaxP(q)P(q∣d)P(d)=argd∈DmaxP(q∣d)P(d)(1)

由于文档的长度是可变的且计算 P ( q ∣ d ) P(q|d) P(q∣d)比 P ( d ∣ q ) P(d|q) P(d∣q)容易,因此我们给定嵌入提示 P P P的文档标记,计算查询标记 q i , ⋯   , n q_{i,\cdots,n} qi,⋯,n的联合概率为 p ( q i , ⋯   , q n ∣ p 1 , ⋯   , p i − 1 ) p(q_{i},\cdots,q_n|p_1,\cdots,p_{i-1}) p(qi,⋯,qn∣p1,⋯,pi−1)。因为 P ( d ) P(d) P(d)通常在语料库 D D D中不会变化,而忽略 P ( d ) P(d) P(d)。

在实践中使用对数概率------模型输出的softmax的对数。

3.2 对称搜索

表3: Quora上的SGPE-CE(Cross-Encoder)对称搜索结果。来自{query}的对数概率之和作为重排名分数。从{doc}左侧截断过长的标记。重排名前100的文档,分数为nDCG@10。

使用§3.1中相同的方法,但调整对称搜索的提示。如表3所示。

4. SGPT Bi-Encoder

4.1 对称搜索

由于自回归解码器Transformer的因果注意掩码,即每个位置的token只能感知到其之前的信息。因此,只有最后一个token关注了序列中的所有标记。SGPT提出使用位置加权池化方法为后面的标记赋予更高的权重:
v = ∑ i = 1 S w i h i where w i = i ∑ i = 1 S i (2) v = \sum_{i=1}^S w_ih_i \quad \text{where} \quad w_i = \frac{i}{\sum_{i=1}^S i} \tag 2 v=i=1∑Swihiwherewi=∑i=1Sii(2)
S S S是序列长度; h i h_i hi是第 i i i个隐藏状态; v v v是查询或文档嵌入。

我们将加权均值池化与最后一个标记池化进行比较,其中最后一个标记的隐藏状态是嵌入或常规的均值池化。

使用批内负样本进行监督对比学习,给定查询-文档对 { q ( i ) , d ( i ) } i = 1 M \{q^{(i)},d^{(i)}\}{i=1}^M {q(i),d(i)}i=1M,优化损失函数:
J CL ( θ ) = 1 M ∑ i = 1 M log ⁡ exp ⁡ ( τ ⋅ σ ( f θ ( q ( i ) ) , f θ ( d ( i ) ) ) ) ∑ j = 1 M exp ⁡ ( τ ⋅ σ ( f θ ( q ( i ) ) , f θ ( d ( j ) ) ) ) (3) J
\text{CL}(\theta) = \frac{1}{M} \sum_{i=1}^M \log \frac{\exp(\tau \cdot \sigma(f_\theta(q^{(i)}), f_\theta(d^{(i)})))}{\sum_{j=1}^M \exp(\tau \cdot \sigma(f_\theta(q^{(i)}), f_\theta(d^{(j)})))} \tag 3 JCL(θ)=M1i=1∑Mlog∑j=1Mexp(τ⋅σ(fθ(q(i)),fθ(d(j))))exp(τ⋅σ(fθ(q(i)),fθ(d(i))))(3)
f θ f_\theta fθ是SGPT模型,输出固定大小的向量; σ \sigma σ是余弦相似度; τ \tau τ是一个温度参数,设为 20 20 20,相当于除以 0.05 0.05 0.05。在训练和推理期间,将序列长度限制为75个标记。

4.2 非对称搜索

遵守§4.1中同样的设置。对于非对称搜索,将模型序列长度限制为300个标记。增加括号使模型区分查询和文档,将查询 q q q的标记增加两个中括号作为 [ q 0 − n ] [q_{0-n}] [q0−n],文档使花括号 { d 0 − n } \{d_{0-n}\} {d0−n}。

5. 结论

这篇工作介绍了SGPT,提出对GPT模型进行修改,将它们用于语义搜索的Cross-或Bi-编码器。

SGPT-BE使用位置加权均值得到最先进的句子嵌入,可以用于语义搜索或其他嵌任务。

SGPT-CE提取预训练GPT模型的对数概率产生无监督的最先进的搜索结果,但只能用于语义搜索。

B任务和实验细节

B.1 提示

总结

⭐ 作者提出了利用仅编码器的类GPT架构来产生句子嵌入以支持语义检索和其他嵌入任务。在Bi-Encoder设置中,使用位置加权平均池化来得到具有语义信息的句子嵌入。在Cross-Encoder设置中,提取预训练GPT模型的对数概率产生无监督结果。

相关推荐
sunnf2 小时前
DB-GPT 智谱在线模型配置
gpt
云起无垠2 小时前
第79期 | GPTSecurity周报
gpt·aigc
鑫宝的学习笔记2 小时前
使用GPT进行SCI论文润色常用语句
gpt
热爱生活的五柒2 小时前
如何用gpt来分析链接里面的内容(比如分析论文链接)
gpt
实验室里哈啤酒3 小时前
ResEmoteNet论文阅读与推理
论文阅读
LuH11244 小时前
【论文阅读笔记】Learning to sample
论文阅读·笔记·图形渲染·点云
开心星人9 小时前
【论文阅读】Unlearning Backdoor Attacks in Federated Learning
论文阅读
that's boy13 小时前
突围边缘:OpenAI开源实时嵌入式API,AI触角延伸至微观世界
人工智能·gpt·chatgpt·开源·openai·midjourney
GPT祖弘14 小时前
【VScode】第三方GPT编程工具-CodeMoss安装教程
ide·vscode·gpt
haibo21441 天前
GPT-Omni 与 Mini-Omni2:创新与性能的结合
gpt