【无人机设计与技术】基于EKF的四旋翼无人机姿态估计matlab仿真

摘要:

本文设计了一种基于扩展卡尔曼滤波(EKF)的四旋翼无人机姿态估计方法。利用EKF算法处理四旋翼无人机姿态的动态模型,通过该滤波算法实现对姿态的实时估计和校正。该方法通过对无人机的运动学和动力学模型的分析,结合仿真验证其精度和稳定性。

理论:

扩展卡尔曼滤波(EKF)是一种用于非线性系统状态估计的递推滤波方法。其理论基础是通过泰勒展开将非线性模型线性化处理,从而实现预测和更新。EKF的状态估计分为两步:预测和更新。预测步骤基于系统模型,更新步骤结合观测数据校正估计误差。

EKF主要步骤:
  • 状态预测:利用系统的动态方程预测下一个状态和协方差矩阵。

  • 状态更新:利用观测方程更新状态和协方差矩阵。

相比于线性卡尔曼滤波器(KF),EKF可以处理非线性模型,通过泰勒展开对模型线性化处理。

实验结果:

通过Matlab Simulink平台对四旋翼无人机进行仿真实验,验证了基于EKF算法的姿态估计效果。实验设置了不同的飞行路径,并采集无人机的姿态数据进行滤波估计。仿真结果显示:

  1. 姿态角估计曲线能够快速跟踪实际姿态变化,且估计误差小。

  2. 滤波后的姿态估计能够有效减少噪声干扰,估计精度较高。

  3. 对比KF与EKF算法,EKF在非线性系统中的表现优于KF。

部分代码:

复制代码
% EKF Initialization
Q = diag([0.1 0.1 0.1]); % Process noise covariance
R = diag([0.01 0.01 0.01]); % Measurement noise covariance

% Initial State
x_hat = [0; 0; 0]; % Initial state estimate (yaw, pitch, roll)
P = eye(3); % Initial covariance

% Simulation loop
for k = 1:N
    % Prediction step
    x_hat_pred = f(x_hat); % State prediction
    F = Jacobian_f(x_hat); % State transition Jacobian
    P_pred = F * P * F' + Q; % Covariance prediction
    
    % Measurement update
    z = [yaw_meas(k); pitch_meas(k); roll_meas(k)]; % Measurements
    H = Jacobian_h(x_hat_pred); % Measurement Jacobian
    K = P_pred * H' / (H * P_pred * H' + R); % Kalman gain
    x_hat = x_hat_pred + K * (z - h(x_hat_pred)); % State update
    P = (eye(3) - K * H) * P_pred; % Covariance update
end

参考文献:

  1. Anderson, B. D. O., & Moore, J. B. (1979). Optimal Filtering. Prentice-Hall.

  2. Simon, D. (2006). Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches. Wiley.

  3. Grewal, M. S., & Andrews, A. P. (2001). Kalman Filtering: Theory and Practice Using MATLAB. Wiley.

相关推荐
꧁坚持很酷꧂几秒前
配置Ubuntu18.04中的Qt Creator为中文(图文详解)
开发语言·qt·ubuntu
不当菜虚困18 分钟前
JAVA设计模式——(四)门面模式
java·开发语言·设计模式
ruyingcai66666618 分钟前
用python进行OCR识别
开发语言·python·ocr
m0Java门徒26 分钟前
面向对象编程核心:封装、继承、多态与 static 关键字深度解析
java·运维·开发语言·intellij-idea·idea
liuweidong080228 分钟前
【Pandas】pandas DataFrame radd
开发语言·python·pandas
农民也会写代码1 小时前
dedecms织梦arclist标签noflag属性过滤多个参数
开发语言·数据库·sql·php·dedecms
内网渗透1 小时前
Python 虚拟环境管理:venv 与 conda 的选择与配置
开发语言·python·conda·虚拟环境·venv
电鱼智能的电小鱼2 小时前
基于 EFISH-SBC-RK3588 的无人机通信云端数据处理模块方案‌
linux·网络·人工智能·嵌入式硬件·无人机·边缘计算
月阳羊2 小时前
【无人机】无人机遥控器设置与校准,飞行模式的选择,无线电控制 (RC) 设置
无人机
每次的天空2 小时前
kotlin与MVVM结合使用总结(三)
开发语言·microsoft·kotlin