【目标检测】yolo的三种数据集格式

目标检测中数据集格式之间的相互转换--coco、voc、yolohttps://zhuanlan.zhihu.com/p/461488682?utm_medium=social&utm_psn=1825483604463071232&utm_source=wechat_session【目标检测】yolo的三种数据集格式https://zhuanlan.zhihu.com/p/525950939?utm_medium=social&utm_psn=1825483832641581056&utm_source=wechat_session

在YOLO目标检测中,常用的标签格式主要有三种:voc(xml)、coco(json)和yolo(txt)。每种格式都有其独特的优点和适用场景。

  • voc(xml)格式 :XML格式因其良好的可读性和扩展性,在目标检测领域得到了广泛应用。它不仅能够存储目标的边界框信息,还能包含其他元数据信息,如图像来源、拍摄时间等。
  • coco(json)格式:JSON格式以其轻量级和易于解析的特点,成为许多现代目标检测数据集的首选。它支持多层嵌套结构,能够更灵活地表示复杂的目标关系。
  • yolo(txt)格式:YOLO算法专用的txt格式标签,简洁明了,直接包含目标的类别和边界框坐标。这种格式在YOLO系列算法的训练中非常高效。

因为我以后的项目大概率继续用的是txt格式,所以本文只写txt格式的相关内容,其他格式参考上面的两个链接。

1、yolo的txt格式

yolov5的比较简单,就是图片和标签分别两个文件夹中,并且自己分类,将图片与标签按照一定的比例区分成训练集和验证集。

txt的标签如下图所示:

第一列为目标类别,后面四个数字为**[x_center, y_center, w, h]**,可以看到都是小于1的数字,是因为对应的整张图片的比例,所以就算图像被拉伸放缩,这种txt格式的标签也可以找到相应的目标。

使用makesense.ai(上一篇文章说过的一个超级强大的在线标注工具)标注之后直接输出的就是txt标签文件,分一下文件夹即可训练。

2、划分数据集

代码请教GPT

3、修改代码

自己的数据集标注好,分好之后当然是用模型进行训练啦。

1、custom.yaml文件

仿照./data/文件夹下的yaml文件,自己写一个

这边的"path" 和"names"改成自己的,这里笔者的train_data放在和yolov5相同目录下。

然后按照官方用例跑,data 参数改为自己的custom.yaml:

复制代码
python train.py --data custom.yaml --epochs 300 --weights ./weights/yolov5s.pt --cfg yolov5s.yaml  --batch-size 128
相关推荐
QBoson1 小时前
量子计算+AI:特征选择与神经网络优化创新应用
人工智能·神经网络·量子计算·图像分类·特征选择·“五岳杯”量子计算挑战赛·相干光量子计算机
Juicedata2 小时前
JuiceFS v1.3-Beta2:集成 Apache Ranger,实现更精细化的权限控制
运维·人工智能·ai
Work(沉淀版)4 小时前
DAY 40
人工智能·深度学习·机器学习
蓦然回首却已人去楼空5 小时前
Build a Large Language Model (From Scratch) 序章
人工智能·语言模型·自然语言处理
CM莫问5 小时前
<论文>(微软)WINA:用于加速大语言模型推理的权重感知神经元激活
人工智能·算法·语言模型·自然语言处理·大模型·推理加速
拾忆-eleven5 小时前
NLP学习路线图(二十六):自注意力机制
人工智能·深度学习
MYH5166 小时前
在NLP文本处理中,将字符映射到阿拉伯数字(构建词汇表vocab)的核心目的和意义
人工智能·深度学习·自然语言处理
要努力啊啊啊6 小时前
KV Cache:大语言模型推理加速的核心机制详解
人工智能·语言模型·自然语言处理
mzlogin8 小时前
DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
人工智能
归去_来兮8 小时前
知识图谱技术概述
大数据·人工智能·知识图谱