浙大数据结构:07-图4 哈利·波特的考试

这道题使用Floyd算法,初次接触该算法会比较难理解,需要去网上查找相关资料多学习一下再来思考这道题,否则这道题理解起来很吃力。

1、条件准备

cpp 复制代码
 #include <bits/stdc++.h>
  #define rep(i, l, r) for (int i = l; i <= r; i++)
  using namespace std;
  #define endl '\n'
先存图,用w二维数组来存,输入两条边和权重,存到数组中
cpp 复制代码
std::ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    int n,m;
    cin>>n>>m;
  vector<vector<int>> w(n+3,vector<int>(n+3,20000));
  rep(i,1,m)
  {
    int a,b,c;cin>>a>>b>>c;
    w[a][b]=w[b][a]=c;
  }

2、bfs算法

因为是无向图,所以从任意起点出发如果没走完所有点,那么这个图不是连通的输出0.
cpp 复制代码
if(bfs(w,n)!=n)
  {
      cout<<'0';return 0;
  }
这里还是用数组模拟队列,从结点1开始遍历。
返回遍历的结点数量
cpp 复制代码
int bfs(vector<vector<int>>& w,int n)
{
   int q[105];int tt=-1,hh=0;
   q[++tt]=1;
   int visit[105]={0};
   visit[1]=1;
   while(hh<=tt)
  {
    int cur=q[hh++];
    rep(i,1,n)
    {
      if(!visit[i]&&w[cur][i]!=20000)
      {
        q[++tt]=i;
        visit[i]=1;
      }
    }
  }
  return tt+1;
}

3、floyd算法

其实该算法是一种动态规划,dp[k][i][j]的含义是从i到j的最短路经过的最大结点为k。

  • 不选 k,那么中间节点的编号都 ≤k−1,即 dp(k,i,j)=dp(k−1,i,j)。
  • 选 k,问题分解成从 i 到 k 的最短路,以及从 k 到 j 的最短路。由于这两条最短路的中间节点都不包含 k,所以中间节点的编号都 ≤k−1,故得到 dp(k,i,j)=dp(k−1,i,k)+dp(k−1,k,j)。
因为结点从1开始,我们把k为0的时候存上图,最后就能让上层扫到了
cpp 复制代码
  vector<vector<vector<int>>> dp(n+3,vector<vector<int>>(n+3,vector<int>(n+3,0)));
  dp[0]=w;
  rep(k,1,n)
  rep(i,1,n)
  rep(j,1,n)
   dp[k][i][j]=min(dp[k-1][i][j],dp[k-1][i][k]+dp[k-1][k][j]);

4、找最远距离最短输出

ans为某点到所有结点的最远距离。node为结点编号。
遍历dp最顶层,存的即为任意两点之间最短距离。
循环遍历,sum存该节点到其它结点的最远距离,注意i!=j
sum如果小于ans则更新答案
cpp 复制代码
int ans=20000,node;
 rep(i,1,n)
 {
   int sum=0;
   rep(j,1,n)
   {
    if(j!=i)sum=max(sum,dp[n][i][j]);
   }
    if(sum<ans){
      ans=sum;
      node=i;
    }
 }
  cout<<node<<' '<<ans;

5、总结

这道题的难点在于floyd算法,建议初学者去查找一些类似题对该算法的详细解释再来做本题。
不过这个算法开始还是比较难理解的,需要反复多次想才能真正明白。
完整代码如下:
cpp 复制代码
  #include <bits/stdc++.h>
  #define rep(i, l, r) for (int i = l; i <= r; i++)
  using namespace std;
  #define endl '\n'


int bfs(vector<vector<int>>& w,int n)
{
   int q[105];int tt=-1,hh=0;
   q[++tt]=1;
   int visit[105]={0};
   visit[1]=1;
   while(hh<=tt)
  {
    int cur=q[hh++];
    rep(i,1,n)
    {
      if(!visit[i]&&w[cur][i]!=20000)
      {
        q[++tt]=i;
        visit[i]=1;
      }
    }
  }
  return tt+1;
}

  int main()
  {
    std::ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    int n,m;
    cin>>n>>m;
  vector<vector<int>> w(n+3,vector<int>(n+3,20000));
  rep(i,1,m)
  {
    int a,b,c;cin>>a>>b>>c;
    w[a][b]=w[b][a]=c;
  }
  if(bfs(w,n)!=n)
  {
      cout<<'0';return 0;
  }

  vector<vector<vector<int>>> dp(n+3,vector<vector<int>>(n+3,vector<int>(n+3,0)));
  dp[0]=w;
  rep(k,1,n)
  rep(i,1,n)
  rep(j,1,n)
   dp[k][i][j]=min(dp[k-1][i][j],dp[k-1][i][k]+dp[k-1][k][j]);


int ans=20000,node;
 rep(i,1,n)
 {
   int sum=0;
   rep(j,1,n)
   {
    if(j!=i)sum=max(sum,dp[n][i][j]);
   }
    if(sum<ans){
      ans=sum;
      node=i;
    }
 }
  cout<<node<<' '<<ans;

    return 0;
  }
相关推荐
Sarvartha4 分钟前
二分查找学习笔记
数据结构·c++·算法
谦宸、墨白2 小时前
从零开始学C++:二叉树进阶
开发语言·数据结构·c++
闲人不梦卿4 小时前
数组和矩阵以及广义表
数据结构
苦藤新鸡5 小时前
41.有序数组(二叉搜索树)转平衡二叉树
数据结构·力扣
毅炼6 小时前
hot100打卡——day14
java·数据结构·算法·leetcode·ai·深度优先·哈希算法
DLGXY6 小时前
数据结构——双向循环链表的建立、添加、遍历(十三)
数据结构·链表
C雨后彩虹6 小时前
优雅子数组
java·数据结构·算法·华为·面试
漫随流水6 小时前
leetcode回溯算法(46.全排列)
数据结构·算法·leetcode·回溯算法
睡一觉就好了。7 小时前
直接选择排序
数据结构·算法·排序算法
芬加达7 小时前
leetcode221 最大正方形
java·数据结构·算法