Polars:从 Apache Spark 过渡指南

Polars:从 Apache Spark 过渡指南

如果您已经熟悉 Apache Spark,那么在使用 Polars 时需要注意一些关键区别。以下是一些典型的 Spark 操作及其对应的 Polars 实现。

1. 基于列的方法 vs. 基于行的方法

Spark DataFrame 类似于一个行的集合,而 Polars DataFrame 更接近于一个列的集合。这意味着你可以在 Polars 中以 Spark 中不可能的方式组合列。

案例 1: 合并 head 与 sum

在 Polars 中,你可以写出以下语句:

python 复制代码
df.select([
    pl.col("foo").sort().head(2),
    pl.col("bar").filter(pl.col("foo") == "d").sum()
])

该代码段输出:

复制代码
shape: (2, 2)
┌─────┬─────┐
│ foo ┆ bar │
│ --- ┆ --- │
│ str ┆ i64 │
╞═════╪═════╡
│ a   ┆ 9   │
├╌╌╌╌╌┼╌╌╌╌╌┤
│ b   ┆ 9   │
└─────┴─────┘

foobar 上的表达式是完全独立的。由于 bar 上的表达式返回一个单一的值,这个值在 foo 表达式输出的每个值中都会重复,但是 ab 与产生 9 没有关系。

要在 Spark 中做类似的事情,你需要单独计算总和,并将其作为字面值返回。

案例 2: 合并两个 head

在 Polars 中,你可以在同一个 DataFrame 上结合两个不同的 head 表达式,只要它们返回相同数量的值。

python 复制代码
df.select([
    pl.col("foo").sort().head(2),
    pl.col("bar").sort(reverse=True).head(2),
])

该代码段输出:

复制代码
shape: (3, 2)
┌─────┬─────┐
│ foo ┆ bar │
│ --- ┆ --- │
│ str ┆ i64 │
╞═════╪═════╡
│ a   ┆ 5   │
├╌╌╌╌╌┼╌╌╌╌╌┤
│ b   ┆ 4   │
└─────┴─────┘

同样,这里的两个 head 表达式是完全独立的,a5b4 的配对纯粹是表达式输出的两列并列的结果。

为了在 Spark 中完成类似的工作,你需要生成一个人工的 key 使你能够以相同的方式连接这些值。

以上代码示例展示了如何将 Spark 中的常见操作转换为 Polars。更多详细信息和高级用法,请访问原网页

相关推荐
what丶k10 分钟前
深入解析Redis数据持久化:RBD机制原理、实操与生产最佳实践
数据库·redis·缓存
共享家952720 分钟前
搭建 AI 聊天机器人:”我的人生我做主“
前端·javascript·css·python·pycharm·html·状态模式
瀚高PG实验室1 小时前
通过数据库日志获取数据库中的慢SQL
数据库·sql·瀚高数据库
Hgfdsaqwr1 小时前
Python在2024年的主要趋势与发展方向
jvm·数据库·python
invicinble1 小时前
对于Mysql深入理解
数据库·mysql
一晌小贪欢1 小时前
Python 测试利器:使用 pytest 高效编写和管理单元测试
python·单元测试·pytest·python3·python测试
小文数模1 小时前
2026年美赛数学建模C题完整参考论文(含模型和代码)
python·数学建模·matlab
Halo_tjn2 小时前
基于封装的专项 知识点
java·前端·python·算法
阳光九叶草LXGZXJ2 小时前
达梦数据库-学习-47-DmDrs控制台命令(LSN、启停、装载)
linux·运维·数据库·sql·学习
Hgfdsaqwr2 小时前
掌握Python魔法方法(Magic Methods)
jvm·数据库·python