Polars:从 Apache Spark 过渡指南

Polars:从 Apache Spark 过渡指南

如果您已经熟悉 Apache Spark,那么在使用 Polars 时需要注意一些关键区别。以下是一些典型的 Spark 操作及其对应的 Polars 实现。

1. 基于列的方法 vs. 基于行的方法

Spark DataFrame 类似于一个行的集合,而 Polars DataFrame 更接近于一个列的集合。这意味着你可以在 Polars 中以 Spark 中不可能的方式组合列。

案例 1: 合并 head 与 sum

在 Polars 中,你可以写出以下语句:

python 复制代码
df.select([
    pl.col("foo").sort().head(2),
    pl.col("bar").filter(pl.col("foo") == "d").sum()
])

该代码段输出:

复制代码
shape: (2, 2)
┌─────┬─────┐
│ foo ┆ bar │
│ --- ┆ --- │
│ str ┆ i64 │
╞═════╪═════╡
│ a   ┆ 9   │
├╌╌╌╌╌┼╌╌╌╌╌┤
│ b   ┆ 9   │
└─────┴─────┘

foobar 上的表达式是完全独立的。由于 bar 上的表达式返回一个单一的值,这个值在 foo 表达式输出的每个值中都会重复,但是 ab 与产生 9 没有关系。

要在 Spark 中做类似的事情,你需要单独计算总和,并将其作为字面值返回。

案例 2: 合并两个 head

在 Polars 中,你可以在同一个 DataFrame 上结合两个不同的 head 表达式,只要它们返回相同数量的值。

python 复制代码
df.select([
    pl.col("foo").sort().head(2),
    pl.col("bar").sort(reverse=True).head(2),
])

该代码段输出:

复制代码
shape: (3, 2)
┌─────┬─────┐
│ foo ┆ bar │
│ --- ┆ --- │
│ str ┆ i64 │
╞═════╪═════╡
│ a   ┆ 5   │
├╌╌╌╌╌┼╌╌╌╌╌┤
│ b   ┆ 4   │
└─────┴─────┘

同样,这里的两个 head 表达式是完全独立的,a5b4 的配对纯粹是表达式输出的两列并列的结果。

为了在 Spark 中完成类似的工作,你需要生成一个人工的 key 使你能够以相同的方式连接这些值。

以上代码示例展示了如何将 Spark 中的常见操作转换为 Polars。更多详细信息和高级用法,请访问原网页

相关推荐
多多*2 分钟前
微服务网关SpringCloudGateway+SaToken鉴权
linux·开发语言·redis·python·sql·log4j·bootstrap
梓仁沐白2 分钟前
【Kotlin】协程
开发语言·python·kotlin
文牧之6 分钟前
PostgreSQL 的扩展pg_freespacemap
运维·数据库·postgresql
Java Fans19 分钟前
在WPF项目中集成Python:Python.NET深度实战指南
python·.net·wpf
deriva23 分钟前
某水表量每15分钟一报,然后某天示数清0了,重新报示值了 ,如何写sql 计算每日水量
数据库·sql
豌豆花下猫40 分钟前
Python 潮流周刊#105:Dify突破10万星、2025全栈开发的最佳实践
后端·python·ai
嘻嘻哈哈OK啦1 小时前
day46打卡
python
木头左1 小时前
Docker容器化技术概述与实践
python
坚持就完事了1 小时前
大二下期末
python·numpy·pandas
蹦蹦跳跳真可爱5891 小时前
Python----目标检测(使用YOLO 模型进行线程安全推理和流媒体源)
人工智能·python·yolo·目标检测·目标跟踪