昇思MindSpore进阶教程--黑塞矩阵

大家好,我是刘明,明志科技创始人,华为昇思MindSpore布道师。

技术上主攻前端开发、鸿蒙开发和AI算法研究。

努力为大家带来持续的技术分享,如果你也喜欢我的文章,就点个关注吧

黑塞矩阵

在介绍MindSpore提供的计算黑塞矩阵的方法之前,首先对黑塞矩阵进行介绍。

黑塞矩阵可以由梯度操作 ∇ \nabla ∇和广度梯度操作 ∂ \partial ∂的复合得到,即
∇ ∘ ∂ : F n 1 ⟶ F n n ⟶ F n × n n \nabla \circ \partial: F_{n}^{1} \longrightarrow F_{n}^{n} \longrightarrow F_{n \times n}^{n} ∇∘∂:Fn1⟶Fnn⟶Fn×nn

将该复合操作用于f,得到,
f ⟼ ∇ f ⟼ J ∇ f f \longmapsto \nabla f \longmapsto J_{\nabla f} f⟼∇f⟼J∇f

可以得到黑塞矩阵,
H f = [ ∂ ( ∇ 1 f ) ∂ x 1 ∂ ( ∇ 1 f ) ∂ x 2 ... ∂ ( ∇ 1 f ) ∂ x n ∂ ( ∇ 2 f ) ∂ x 1 ∂ ( ∇ 2 f ) ∂ x 2 ... ∂ ( ∇ 2 f ) ∂ x n ⋮ ⋮ ⋱ ⋮ ∂ ( ∇ n f ) ∂ x 1 ∂ ( ∇ n f ) ∂ x 2 ... ∂ ( ∇ n f ) ∂ x n ] = [ ∂ 2 f ∂ x 1 2 ∂ 2 f ∂ x 2 ∂ x 1 ... ∂ 2 f ∂ x n ∂ x 1 ∂ 2 f ∂ x 1 ∂ x 2 ∂ 2 f ∂ x 2 2 ... ∂ 2 f ∂ x n ∂ x 2 ⋮ ⋮ ⋱ ⋮ ∂ 2 f ∂ x 1 ∂ x n ∂ 2 f ∂ x 2 ∂ x n ... ∂ 2 f ∂ x n 2 ] \begin{split}H_{f} = \begin{bmatrix} \frac{\partial (\nabla {1}f)}{\partial x{1}} &\frac{\partial (\nabla {1}f)}{\partial x{2}} &\dots &\frac{\partial (\nabla {1}f)}{\partial x{n}} \\ \frac{\partial (\nabla {2}f)}{\partial x{1}} &\frac{\partial (\nabla {2}f)}{\partial x{2}} &\dots &\frac{\partial (\nabla {2}f)}{\partial x{n}} \\ \vdots &\vdots &\ddots &\vdots \\ \frac{\partial (\nabla {n}f)}{\partial x{1}} &\frac{\partial (\nabla {n}f)}{\partial x{2}} &\dots &\frac{\partial (\nabla {n}f)}{\partial x{n}} \end{bmatrix} = \begin{bmatrix} \frac{\partial ^2 f}{\partial x_{1}^{2}} &\frac{\partial ^2 f}{\partial x_{2} \partial x_{1}} &\dots &\frac{\partial ^2 f}{\partial x_{n} \partial x_{1}} \\ \frac{\partial ^2 f}{\partial x_{1} \partial x_{2}} &\frac{\partial ^2 f}{\partial x_{2}^{2}} &\dots &\frac{\partial ^2 f}{\partial x_{n} \partial x_{2}} \\ \vdots &\vdots &\ddots &\vdots \\ \frac{\partial ^2 f}{\partial x_{1} \partial x_{n}} &\frac{\partial ^2 f}{\partial x_{2} \partial x_{n}} &\dots &\frac{\partial ^2 f}{\partial x_{n}^{2}} \end{bmatrix}\end{split} Hf= ∂x1∂(∇1f)∂x1∂(∇2f)⋮∂x1∂(∇nf)∂x2∂(∇1f)∂x2∂(∇2f)⋮∂x2∂(∇nf)......⋱...∂xn∂(∇1f)∂xn∂(∇2f)⋮∂xn∂(∇nf) = ∂x12∂2f∂x1∂x2∂2f⋮∂x1∂xn∂2f∂x2∂x1∂2f∂x22∂2f⋮∂x2∂xn∂2f......⋱...∂xn∂x1∂2f∂xn∂x2∂2f⋮∂xn2∂2f

易见,黑塞矩阵是一个实对称矩阵。

黑塞矩阵的应用:利用黑塞矩阵,我们可以探索神经网络在某点处的曲率,为训练是否收敛提供数值依据。

计算黑塞矩阵

在MindSpore中,我们可以通过jacfwd和jacrev的任意组合来计算黑塞矩阵。

python 复制代码
Din = 32
Dout = 16
weight = ops.randn(Dout, Din)
bias = ops.randn(Dout)
x = ops.randn(Din)

hess1 = jacfwd(jacfwd(forecast, grad_position=2), grad_position=2)(weight, bias, x)
hess2 = jacfwd(jacrev(forecast, grad_position=2), grad_position=2)(weight, bias, x)
hess3 = jacrev(jacfwd(forecast, grad_position=2), grad_position=2)(weight, bias, x)
hess4 = jacrev(jacrev(forecast, grad_position=2), grad_position=2)(weight, bias, x)

np.allclose(hess1.asnumpy(), hess2.asnumpy())
np.allclose(hess2.asnumpy(), hess3.asnumpy())
np.allclose(hess3.asnumpy(), hess4.asnumpy())

计算黑塞-向量积

计算黑塞-向量积(Hessian-vector product, hvp)的最直接的方法计算一个完整的黑塞矩阵,并将其与向量进行点积运算。但MindSpore提供了更好的方法,使得不需要计算一个完整的黑塞矩阵,便可以计算黑塞-向量积。下面我们介绍计算黑塞-向量积的两种方法。

  • 将反向模式自动微分与反向模式自动微分组合。

  • 将反向模式自动微分与前向模式自动微分组合。

下面先介绍,在MindSpore中,如何使用反向模式自动微分与前向模式自动微分组合的方式计算黑塞-向量积,

python 复制代码
def hvp_revfwd(f, inputs, vector):
    return jvp(grad(f), inputs, vector)[1]

def f(x):
    return x.sin().sum()

inputs = ops.randn(128)
vector = ops.randn(128)

result_hvp_revfwd = hvp_revfwd(f, inputs, vector)
print(result_hvp_revfwd.shape)

如果前向自动微分不能满足要求,我们可以使用反向模式自动微分与反向模式自动微分组合的方式来计算黑塞-向量积,

python 复制代码
def hvp_revrev(f, inputs, vector):
    _, vjp_fn = vjp(grad(f), *inputs)
    return vjp_fn(*vector)

result_hvp_revrev = hvp_revrev(f, (inputs,), (vector,))
print(result_hvp_revrev[0].shape)
相关推荐
卧式纯绿5 分钟前
每日文献(八)——Part one
人工智能·yolo·目标检测·计算机视觉·目标跟踪·cnn
巷95512 分钟前
OpenCV图像形态学:原理、操作与应用详解
人工智能·opencv·计算机视觉
深蓝易网41 分钟前
为什么制造企业需要用MES管理系统升级改造车间
大数据·运维·人工智能·制造·devops
xiangzhihong81 小时前
Amodal3R ,南洋理工推出的 3D 生成模型
人工智能·深度学习·计算机视觉
狂奔solar1 小时前
diffusion-vas 提升遮挡区域的分割精度
人工智能·深度学习
资源大全免费分享1 小时前
MacOS 的 AI Agent 新星,本地沙盒驱动,解锁 macOS 操作新体验!
人工智能·macos·策略模式
跳跳糖炒酸奶2 小时前
第四章、Isaacsim在GUI中构建机器人(2):组装一个简单的机器人
人工智能·python·算法·ubuntu·机器人
AI.NET 极客圈2 小时前
AI与.NET技术实操系列(四):使用 Semantic Kernel 和 DeepSeek 构建AI应用
人工智能·.net
Debroon2 小时前
应华为 AI 医疗军团之战,各方动态和反应
人工智能·华为
俊哥V2 小时前
阿里通义千问发布全模态开源大模型Qwen2.5-Omni-7B
人工智能·ai