昇思MindSpore进阶教程--黑塞矩阵

大家好,我是刘明,明志科技创始人,华为昇思MindSpore布道师。

技术上主攻前端开发、鸿蒙开发和AI算法研究。

努力为大家带来持续的技术分享,如果你也喜欢我的文章,就点个关注吧

黑塞矩阵

在介绍MindSpore提供的计算黑塞矩阵的方法之前,首先对黑塞矩阵进行介绍。

黑塞矩阵可以由梯度操作 ∇ \nabla ∇和广度梯度操作 ∂ \partial ∂的复合得到,即
∇ ∘ ∂ : F n 1 ⟶ F n n ⟶ F n × n n \nabla \circ \partial: F_{n}^{1} \longrightarrow F_{n}^{n} \longrightarrow F_{n \times n}^{n} ∇∘∂:Fn1⟶Fnn⟶Fn×nn

将该复合操作用于f,得到,
f ⟼ ∇ f ⟼ J ∇ f f \longmapsto \nabla f \longmapsto J_{\nabla f} f⟼∇f⟼J∇f

可以得到黑塞矩阵,
H f = [ ∂ ( ∇ 1 f ) ∂ x 1 ∂ ( ∇ 1 f ) ∂ x 2 ... ∂ ( ∇ 1 f ) ∂ x n ∂ ( ∇ 2 f ) ∂ x 1 ∂ ( ∇ 2 f ) ∂ x 2 ... ∂ ( ∇ 2 f ) ∂ x n ⋮ ⋮ ⋱ ⋮ ∂ ( ∇ n f ) ∂ x 1 ∂ ( ∇ n f ) ∂ x 2 ... ∂ ( ∇ n f ) ∂ x n ] = [ ∂ 2 f ∂ x 1 2 ∂ 2 f ∂ x 2 ∂ x 1 ... ∂ 2 f ∂ x n ∂ x 1 ∂ 2 f ∂ x 1 ∂ x 2 ∂ 2 f ∂ x 2 2 ... ∂ 2 f ∂ x n ∂ x 2 ⋮ ⋮ ⋱ ⋮ ∂ 2 f ∂ x 1 ∂ x n ∂ 2 f ∂ x 2 ∂ x n ... ∂ 2 f ∂ x n 2 ] \begin{split}H_{f} = \begin{bmatrix} \frac{\partial (\nabla {1}f)}{\partial x{1}} &\frac{\partial (\nabla {1}f)}{\partial x{2}} &\dots &\frac{\partial (\nabla {1}f)}{\partial x{n}} \\ \frac{\partial (\nabla {2}f)}{\partial x{1}} &\frac{\partial (\nabla {2}f)}{\partial x{2}} &\dots &\frac{\partial (\nabla {2}f)}{\partial x{n}} \\ \vdots &\vdots &\ddots &\vdots \\ \frac{\partial (\nabla {n}f)}{\partial x{1}} &\frac{\partial (\nabla {n}f)}{\partial x{2}} &\dots &\frac{\partial (\nabla {n}f)}{\partial x{n}} \end{bmatrix} = \begin{bmatrix} \frac{\partial ^2 f}{\partial x_{1}^{2}} &\frac{\partial ^2 f}{\partial x_{2} \partial x_{1}} &\dots &\frac{\partial ^2 f}{\partial x_{n} \partial x_{1}} \\ \frac{\partial ^2 f}{\partial x_{1} \partial x_{2}} &\frac{\partial ^2 f}{\partial x_{2}^{2}} &\dots &\frac{\partial ^2 f}{\partial x_{n} \partial x_{2}} \\ \vdots &\vdots &\ddots &\vdots \\ \frac{\partial ^2 f}{\partial x_{1} \partial x_{n}} &\frac{\partial ^2 f}{\partial x_{2} \partial x_{n}} &\dots &\frac{\partial ^2 f}{\partial x_{n}^{2}} \end{bmatrix}\end{split} Hf= ∂x1∂(∇1f)∂x1∂(∇2f)⋮∂x1∂(∇nf)∂x2∂(∇1f)∂x2∂(∇2f)⋮∂x2∂(∇nf)......⋱...∂xn∂(∇1f)∂xn∂(∇2f)⋮∂xn∂(∇nf) = ∂x12∂2f∂x1∂x2∂2f⋮∂x1∂xn∂2f∂x2∂x1∂2f∂x22∂2f⋮∂x2∂xn∂2f......⋱...∂xn∂x1∂2f∂xn∂x2∂2f⋮∂xn2∂2f

易见,黑塞矩阵是一个实对称矩阵。

黑塞矩阵的应用:利用黑塞矩阵,我们可以探索神经网络在某点处的曲率,为训练是否收敛提供数值依据。

计算黑塞矩阵

在MindSpore中,我们可以通过jacfwd和jacrev的任意组合来计算黑塞矩阵。

python 复制代码
Din = 32
Dout = 16
weight = ops.randn(Dout, Din)
bias = ops.randn(Dout)
x = ops.randn(Din)

hess1 = jacfwd(jacfwd(forecast, grad_position=2), grad_position=2)(weight, bias, x)
hess2 = jacfwd(jacrev(forecast, grad_position=2), grad_position=2)(weight, bias, x)
hess3 = jacrev(jacfwd(forecast, grad_position=2), grad_position=2)(weight, bias, x)
hess4 = jacrev(jacrev(forecast, grad_position=2), grad_position=2)(weight, bias, x)

np.allclose(hess1.asnumpy(), hess2.asnumpy())
np.allclose(hess2.asnumpy(), hess3.asnumpy())
np.allclose(hess3.asnumpy(), hess4.asnumpy())

计算黑塞-向量积

计算黑塞-向量积(Hessian-vector product, hvp)的最直接的方法计算一个完整的黑塞矩阵,并将其与向量进行点积运算。但MindSpore提供了更好的方法,使得不需要计算一个完整的黑塞矩阵,便可以计算黑塞-向量积。下面我们介绍计算黑塞-向量积的两种方法。

  • 将反向模式自动微分与反向模式自动微分组合。

  • 将反向模式自动微分与前向模式自动微分组合。

下面先介绍,在MindSpore中,如何使用反向模式自动微分与前向模式自动微分组合的方式计算黑塞-向量积,

python 复制代码
def hvp_revfwd(f, inputs, vector):
    return jvp(grad(f), inputs, vector)[1]

def f(x):
    return x.sin().sum()

inputs = ops.randn(128)
vector = ops.randn(128)

result_hvp_revfwd = hvp_revfwd(f, inputs, vector)
print(result_hvp_revfwd.shape)

如果前向自动微分不能满足要求,我们可以使用反向模式自动微分与反向模式自动微分组合的方式来计算黑塞-向量积,

python 复制代码
def hvp_revrev(f, inputs, vector):
    _, vjp_fn = vjp(grad(f), *inputs)
    return vjp_fn(*vector)

result_hvp_revrev = hvp_revrev(f, (inputs,), (vector,))
print(result_hvp_revrev[0].shape)
相关推荐
weixin_387545645 分钟前
探索 AnythingLLM:借助开源 AI 打造私有化智能知识库
人工智能
engchina1 小时前
如何在 Python 中忽略烦人的警告?
开发语言·人工智能·python
paixiaoxin1 小时前
CV-OCR经典论文解读|An Empirical Study of Scaling Law for OCR/OCR 缩放定律的实证研究
人工智能·深度学习·机器学习·生成对抗网络·计算机视觉·ocr·.net
OpenCSG2 小时前
CSGHub开源版本v1.2.0更新
人工智能
weixin_515202492 小时前
第R3周:RNN-心脏病预测
人工智能·rnn·深度学习
Altair澳汰尔2 小时前
数据分析和AI丨知识图谱,AI革命中数据集成和模型构建的关键推动者
人工智能·算法·机器学习·数据分析·知识图谱
机器之心2 小时前
图学习新突破:一个统一框架连接空域和频域
人工智能·后端
AI视觉网奇2 小时前
人脸生成3d模型 Era3D
人工智能·计算机视觉
call me by ur name2 小时前
VLM--CLIP作分类任务的损失函数
人工智能·机器学习·分类
吃个糖糖2 小时前
34 Opencv 自定义角点检测
人工智能·opencv·计算机视觉