昇思MindSpore进阶教程--黑塞矩阵

大家好,我是刘明,明志科技创始人,华为昇思MindSpore布道师。

技术上主攻前端开发、鸿蒙开发和AI算法研究。

努力为大家带来持续的技术分享,如果你也喜欢我的文章,就点个关注吧

黑塞矩阵

在介绍MindSpore提供的计算黑塞矩阵的方法之前,首先对黑塞矩阵进行介绍。

黑塞矩阵可以由梯度操作 ∇ \nabla ∇和广度梯度操作 ∂ \partial ∂的复合得到,即
∇ ∘ ∂ : F n 1 ⟶ F n n ⟶ F n × n n \nabla \circ \partial: F_{n}^{1} \longrightarrow F_{n}^{n} \longrightarrow F_{n \times n}^{n} ∇∘∂:Fn1⟶Fnn⟶Fn×nn

将该复合操作用于f,得到,
f ⟼ ∇ f ⟼ J ∇ f f \longmapsto \nabla f \longmapsto J_{\nabla f} f⟼∇f⟼J∇f

可以得到黑塞矩阵,
H f = [ ∂ ( ∇ 1 f ) ∂ x 1 ∂ ( ∇ 1 f ) ∂ x 2 ... ∂ ( ∇ 1 f ) ∂ x n ∂ ( ∇ 2 f ) ∂ x 1 ∂ ( ∇ 2 f ) ∂ x 2 ... ∂ ( ∇ 2 f ) ∂ x n ⋮ ⋮ ⋱ ⋮ ∂ ( ∇ n f ) ∂ x 1 ∂ ( ∇ n f ) ∂ x 2 ... ∂ ( ∇ n f ) ∂ x n ] = [ ∂ 2 f ∂ x 1 2 ∂ 2 f ∂ x 2 ∂ x 1 ... ∂ 2 f ∂ x n ∂ x 1 ∂ 2 f ∂ x 1 ∂ x 2 ∂ 2 f ∂ x 2 2 ... ∂ 2 f ∂ x n ∂ x 2 ⋮ ⋮ ⋱ ⋮ ∂ 2 f ∂ x 1 ∂ x n ∂ 2 f ∂ x 2 ∂ x n ... ∂ 2 f ∂ x n 2 ] \begin{split}H_{f} = \begin{bmatrix} \frac{\partial (\nabla {1}f)}{\partial x{1}} &\frac{\partial (\nabla {1}f)}{\partial x{2}} &\dots &\frac{\partial (\nabla {1}f)}{\partial x{n}} \\ \frac{\partial (\nabla {2}f)}{\partial x{1}} &\frac{\partial (\nabla {2}f)}{\partial x{2}} &\dots &\frac{\partial (\nabla {2}f)}{\partial x{n}} \\ \vdots &\vdots &\ddots &\vdots \\ \frac{\partial (\nabla {n}f)}{\partial x{1}} &\frac{\partial (\nabla {n}f)}{\partial x{2}} &\dots &\frac{\partial (\nabla {n}f)}{\partial x{n}} \end{bmatrix} = \begin{bmatrix} \frac{\partial ^2 f}{\partial x_{1}^{2}} &\frac{\partial ^2 f}{\partial x_{2} \partial x_{1}} &\dots &\frac{\partial ^2 f}{\partial x_{n} \partial x_{1}} \\ \frac{\partial ^2 f}{\partial x_{1} \partial x_{2}} &\frac{\partial ^2 f}{\partial x_{2}^{2}} &\dots &\frac{\partial ^2 f}{\partial x_{n} \partial x_{2}} \\ \vdots &\vdots &\ddots &\vdots \\ \frac{\partial ^2 f}{\partial x_{1} \partial x_{n}} &\frac{\partial ^2 f}{\partial x_{2} \partial x_{n}} &\dots &\frac{\partial ^2 f}{\partial x_{n}^{2}} \end{bmatrix}\end{split} Hf= ∂x1∂(∇1f)∂x1∂(∇2f)⋮∂x1∂(∇nf)∂x2∂(∇1f)∂x2∂(∇2f)⋮∂x2∂(∇nf)......⋱...∂xn∂(∇1f)∂xn∂(∇2f)⋮∂xn∂(∇nf) = ∂x12∂2f∂x1∂x2∂2f⋮∂x1∂xn∂2f∂x2∂x1∂2f∂x22∂2f⋮∂x2∂xn∂2f......⋱...∂xn∂x1∂2f∂xn∂x2∂2f⋮∂xn2∂2f

易见,黑塞矩阵是一个实对称矩阵。

黑塞矩阵的应用:利用黑塞矩阵,我们可以探索神经网络在某点处的曲率,为训练是否收敛提供数值依据。

计算黑塞矩阵

在MindSpore中,我们可以通过jacfwd和jacrev的任意组合来计算黑塞矩阵。

python 复制代码
Din = 32
Dout = 16
weight = ops.randn(Dout, Din)
bias = ops.randn(Dout)
x = ops.randn(Din)

hess1 = jacfwd(jacfwd(forecast, grad_position=2), grad_position=2)(weight, bias, x)
hess2 = jacfwd(jacrev(forecast, grad_position=2), grad_position=2)(weight, bias, x)
hess3 = jacrev(jacfwd(forecast, grad_position=2), grad_position=2)(weight, bias, x)
hess4 = jacrev(jacrev(forecast, grad_position=2), grad_position=2)(weight, bias, x)

np.allclose(hess1.asnumpy(), hess2.asnumpy())
np.allclose(hess2.asnumpy(), hess3.asnumpy())
np.allclose(hess3.asnumpy(), hess4.asnumpy())

计算黑塞-向量积

计算黑塞-向量积(Hessian-vector product, hvp)的最直接的方法计算一个完整的黑塞矩阵,并将其与向量进行点积运算。但MindSpore提供了更好的方法,使得不需要计算一个完整的黑塞矩阵,便可以计算黑塞-向量积。下面我们介绍计算黑塞-向量积的两种方法。

  • 将反向模式自动微分与反向模式自动微分组合。

  • 将反向模式自动微分与前向模式自动微分组合。

下面先介绍,在MindSpore中,如何使用反向模式自动微分与前向模式自动微分组合的方式计算黑塞-向量积,

python 复制代码
def hvp_revfwd(f, inputs, vector):
    return jvp(grad(f), inputs, vector)[1]

def f(x):
    return x.sin().sum()

inputs = ops.randn(128)
vector = ops.randn(128)

result_hvp_revfwd = hvp_revfwd(f, inputs, vector)
print(result_hvp_revfwd.shape)

如果前向自动微分不能满足要求,我们可以使用反向模式自动微分与反向模式自动微分组合的方式来计算黑塞-向量积,

python 复制代码
def hvp_revrev(f, inputs, vector):
    _, vjp_fn = vjp(grad(f), *inputs)
    return vjp_fn(*vector)

result_hvp_revrev = hvp_revrev(f, (inputs,), (vector,))
print(result_hvp_revrev[0].shape)
相关推荐
刘什么洋啊Zz1 小时前
MacOS下使用Ollama本地构建DeepSeek并使用本地Dify构建AI应用
人工智能·macos·ai·ollama·deepseek
奔跑草-2 小时前
【拥抱AI】GPT Researcher 源码试跑成功的心得与总结
人工智能·gpt·ai搜索·deep research·深度检索
禁默2 小时前
【第四届网络安全、人工智能与数字经济国际学术会议(CSAIDE 2025】网络安全,人工智能,数字经济的研究
人工智能·安全·web安全·数字经济·学术论文
boooo_hhh4 小时前
深度学习笔记16-VGG-16算法-Pytorch实现人脸识别
pytorch·深度学习·机器学习
AnnyYoung4 小时前
华为云deepseek大模型平台:deepseek满血版
人工智能·ai·华为云
INDEMIND5 小时前
INDEMIND:AI视觉赋能服务机器人,“零”碰撞避障技术实现全天候安全
人工智能·视觉导航·服务机器人·商用机器人
慕容木木5 小时前
【全网最全教程】使用最强DeepSeekR1+联网的火山引擎,没有生成长度限制,DeepSeek本体的替代品,可本地部署+知识库,注册即可有750w的token使用
人工智能·火山引擎·deepseek·deepseek r1
南 阳5 小时前
百度搜索全面接入DeepSeek-R1满血版:AI与搜索的全新融合
人工智能·chatgpt
企鹅侠客5 小时前
开源免费文档翻译工具 可支持pdf、word、excel、ppt
人工智能·pdf·word·excel·自动翻译
冰淇淋百宝箱6 小时前
AI 安全时代:SDL与大模型结合的“王炸组合”——技术落地与实战指南
人工智能·安全