昇思MindSpore进阶教程--黑塞矩阵

大家好,我是刘明,明志科技创始人,华为昇思MindSpore布道师。

技术上主攻前端开发、鸿蒙开发和AI算法研究。

努力为大家带来持续的技术分享,如果你也喜欢我的文章,就点个关注吧

黑塞矩阵

在介绍MindSpore提供的计算黑塞矩阵的方法之前,首先对黑塞矩阵进行介绍。

黑塞矩阵可以由梯度操作 ∇ \nabla ∇和广度梯度操作 ∂ \partial ∂的复合得到,即
∇ ∘ ∂ : F n 1 ⟶ F n n ⟶ F n × n n \nabla \circ \partial: F_{n}^{1} \longrightarrow F_{n}^{n} \longrightarrow F_{n \times n}^{n} ∇∘∂:Fn1⟶Fnn⟶Fn×nn

将该复合操作用于f,得到,
f ⟼ ∇ f ⟼ J ∇ f f \longmapsto \nabla f \longmapsto J_{\nabla f} f⟼∇f⟼J∇f

可以得到黑塞矩阵,
H f = [ ∂ ( ∇ 1 f ) ∂ x 1 ∂ ( ∇ 1 f ) ∂ x 2 ... ∂ ( ∇ 1 f ) ∂ x n ∂ ( ∇ 2 f ) ∂ x 1 ∂ ( ∇ 2 f ) ∂ x 2 ... ∂ ( ∇ 2 f ) ∂ x n ⋮ ⋮ ⋱ ⋮ ∂ ( ∇ n f ) ∂ x 1 ∂ ( ∇ n f ) ∂ x 2 ... ∂ ( ∇ n f ) ∂ x n ] = [ ∂ 2 f ∂ x 1 2 ∂ 2 f ∂ x 2 ∂ x 1 ... ∂ 2 f ∂ x n ∂ x 1 ∂ 2 f ∂ x 1 ∂ x 2 ∂ 2 f ∂ x 2 2 ... ∂ 2 f ∂ x n ∂ x 2 ⋮ ⋮ ⋱ ⋮ ∂ 2 f ∂ x 1 ∂ x n ∂ 2 f ∂ x 2 ∂ x n ... ∂ 2 f ∂ x n 2 ] \begin{split}H_{f} = \begin{bmatrix} \frac{\partial (\nabla {1}f)}{\partial x{1}} &\frac{\partial (\nabla {1}f)}{\partial x{2}} &\dots &\frac{\partial (\nabla {1}f)}{\partial x{n}} \\ \frac{\partial (\nabla {2}f)}{\partial x{1}} &\frac{\partial (\nabla {2}f)}{\partial x{2}} &\dots &\frac{\partial (\nabla {2}f)}{\partial x{n}} \\ \vdots &\vdots &\ddots &\vdots \\ \frac{\partial (\nabla {n}f)}{\partial x{1}} &\frac{\partial (\nabla {n}f)}{\partial x{2}} &\dots &\frac{\partial (\nabla {n}f)}{\partial x{n}} \end{bmatrix} = \begin{bmatrix} \frac{\partial ^2 f}{\partial x_{1}^{2}} &\frac{\partial ^2 f}{\partial x_{2} \partial x_{1}} &\dots &\frac{\partial ^2 f}{\partial x_{n} \partial x_{1}} \\ \frac{\partial ^2 f}{\partial x_{1} \partial x_{2}} &\frac{\partial ^2 f}{\partial x_{2}^{2}} &\dots &\frac{\partial ^2 f}{\partial x_{n} \partial x_{2}} \\ \vdots &\vdots &\ddots &\vdots \\ \frac{\partial ^2 f}{\partial x_{1} \partial x_{n}} &\frac{\partial ^2 f}{\partial x_{2} \partial x_{n}} &\dots &\frac{\partial ^2 f}{\partial x_{n}^{2}} \end{bmatrix}\end{split} Hf= ∂x1∂(∇1f)∂x1∂(∇2f)⋮∂x1∂(∇nf)∂x2∂(∇1f)∂x2∂(∇2f)⋮∂x2∂(∇nf)......⋱...∂xn∂(∇1f)∂xn∂(∇2f)⋮∂xn∂(∇nf) = ∂x12∂2f∂x1∂x2∂2f⋮∂x1∂xn∂2f∂x2∂x1∂2f∂x22∂2f⋮∂x2∂xn∂2f......⋱...∂xn∂x1∂2f∂xn∂x2∂2f⋮∂xn2∂2f

易见,黑塞矩阵是一个实对称矩阵。

黑塞矩阵的应用:利用黑塞矩阵,我们可以探索神经网络在某点处的曲率,为训练是否收敛提供数值依据。

计算黑塞矩阵

在MindSpore中,我们可以通过jacfwd和jacrev的任意组合来计算黑塞矩阵。

python 复制代码
Din = 32
Dout = 16
weight = ops.randn(Dout, Din)
bias = ops.randn(Dout)
x = ops.randn(Din)

hess1 = jacfwd(jacfwd(forecast, grad_position=2), grad_position=2)(weight, bias, x)
hess2 = jacfwd(jacrev(forecast, grad_position=2), grad_position=2)(weight, bias, x)
hess3 = jacrev(jacfwd(forecast, grad_position=2), grad_position=2)(weight, bias, x)
hess4 = jacrev(jacrev(forecast, grad_position=2), grad_position=2)(weight, bias, x)

np.allclose(hess1.asnumpy(), hess2.asnumpy())
np.allclose(hess2.asnumpy(), hess3.asnumpy())
np.allclose(hess3.asnumpy(), hess4.asnumpy())

计算黑塞-向量积

计算黑塞-向量积(Hessian-vector product, hvp)的最直接的方法计算一个完整的黑塞矩阵,并将其与向量进行点积运算。但MindSpore提供了更好的方法,使得不需要计算一个完整的黑塞矩阵,便可以计算黑塞-向量积。下面我们介绍计算黑塞-向量积的两种方法。

  • 将反向模式自动微分与反向模式自动微分组合。

  • 将反向模式自动微分与前向模式自动微分组合。

下面先介绍,在MindSpore中,如何使用反向模式自动微分与前向模式自动微分组合的方式计算黑塞-向量积,

python 复制代码
def hvp_revfwd(f, inputs, vector):
    return jvp(grad(f), inputs, vector)[1]

def f(x):
    return x.sin().sum()

inputs = ops.randn(128)
vector = ops.randn(128)

result_hvp_revfwd = hvp_revfwd(f, inputs, vector)
print(result_hvp_revfwd.shape)

如果前向自动微分不能满足要求,我们可以使用反向模式自动微分与反向模式自动微分组合的方式来计算黑塞-向量积,

python 复制代码
def hvp_revrev(f, inputs, vector):
    _, vjp_fn = vjp(grad(f), *inputs)
    return vjp_fn(*vector)

result_hvp_revrev = hvp_revrev(f, (inputs,), (vector,))
print(result_hvp_revrev[0].shape)
相关推荐
scdifsn9 分钟前
动手学深度学习12.7. 参数服务器-笔记&练习(PyTorch)
pytorch·笔记·深度学习·分布式计算·数据并行·参数服务器
DFminer23 分钟前
【LLM】fast-api 流式生成测试
人工智能·机器人
郄堃Deep Traffic36 分钟前
机器学习+城市规划第十四期:利用半参数地理加权回归来实现区域带宽不同的规划任务
人工智能·机器学习·回归·城市规划
海盗儿1 小时前
Attention Is All You Need (Transformer) 以及Transformer pytorch实现
pytorch·深度学习·transformer
GIS小天1 小时前
AI+预测3D新模型百十个定位预测+胆码预测+去和尾2025年6月7日第101弹
人工智能·算法·机器学习·彩票
阿部多瑞 ABU2 小时前
主流大语言模型安全性测试(三):阿拉伯语越狱提示词下的表现与分析
人工智能·安全·ai·语言模型·安全性测试
cnbestec2 小时前
Xela矩阵三轴触觉传感器的工作原理解析与应用场景
人工智能·线性代数·触觉传感器
_Itachi__2 小时前
LeetCode 热题 100 74. 搜索二维矩阵
算法·leetcode·矩阵
不忘不弃2 小时前
计算矩阵A和B的乘积
线性代数·算法·矩阵
不爱写代码的玉子2 小时前
HALCON透视矩阵
人工智能·深度学习·线性代数·算法·计算机视觉·矩阵·c#