深度学习:循环神经网络RNN

目录

一、神经网络的历程

1.传统神经网络存在的问题

2.提出一种新的神经网络

二、RNN基本结构

1.RNN基本结构

2.RNN的独特结构

3.RNN的局限性


一、神经网络的历程

1.传统神经网络存在的问题

  • 无法训练出具有顺序的数据。模型搭建时没有考虑数据上下之间的关系。
  • 因为传统神经网络输入数据的时候是同时输入,同一层的数据之间没有顺序关系,所以对于连续性的数据没有很好的预测效果

2.提出一种新的神经网络

  • 为了解决传统神经网络的问题,提出了一种新的神经网络------RNN(Recurrent Neural Network)在处理序列输入时具有记忆性,可以保留之前输入的信息并继续作为后续输入的一部分进行计算。

二、RNN基本结构

1.RNN基本结构

  • 下方蓝色的是输入,
  • 中间的矩形是隐藏层,
  • 上方紫色的是输出层
  • 看成传统神经网络转了个方向比较好理解

2.RNN的独特结构

  • RNN叫循环神经网络
  • 那么它的循环在哪呢,就是它的独特结构
  • 最开始的时候会有一个类似于偏置项的h0
  • h0乘以一个w矩阵然后与输入的数据x乘以一个u矩阵得到的结果再加上偏置项然后传入激活函数得到h1
  • h1乘以一个v矩阵加上偏置项c的结果传入交叉熵激活函数,得到输出的y1
  • 依次循环下去,得到最终的yn
  • 这个yn就是结合了整个数据的特征
  • 注意:
    • 每一次训练中计算用的u,v,w,b都是一样的 ,训练完反向传播会进行更新
    • RNN结构中输入是x1, x2, .....xn,输出为y1, y2, ...yn,也就是说,输入和输出序列必须要是等长的

3.RNN的局限性

  • 当出现"我的职业是程序员,...,我最擅长的是电脑"。当需要预测最后的词"电脑"。

  • 当前的信息建议下一个词可能是一种技能,但是如果我们需要弄清楚是什么技能,需要先前提到的离当前位置很远的"职业是程序员"的上下文。

  • 这说明相关信息和当前预测位置之间的间隔就变得相当的大。

  • 在理论上,RNN绝对可以处理这样的长期依赖问题。

  • 人们可以仔细挑选参数来解决这类问题中的最初级形式,但在实践中,RNN则没法太好的学习到这些知识。

  • 这使得模型难以学习长距离依赖关系

  • 原因是:梯度会随着时间的推移不断下降减少,而当梯度值变得非常小时,就不会继续学习。

相关推荐
xsc-xyc11 分钟前
RuntimeError: Dataset ‘/data.yaml‘ error ❌ ‘_lz
人工智能·深度学习·yolo·计算机视觉·视觉检测
深蓝海拓13 分钟前
PySide6从0开始学习的笔记(二十七) 日志管理
笔记·python·学习·pyqt
xqqxqxxq24 分钟前
Java Thread 类核心技术笔记
java·笔记
AI周红伟38 分钟前
周红伟: DeepSeek大模型微调和部署实战:大模型全解析、部署及大模型训练微调代码实战
人工智能·深度学习
老师用之于民43 分钟前
【DAY21】Linux软件编程基础&Shell 命令、脚本及系统管理实操
linux·运维·chrome·经验分享·笔记·ubuntu
iFeng的小屋1 小时前
【2026年新版】Python根据小红书关键词爬取所有笔记数据
笔记·爬虫·python
山岚的运维笔记1 小时前
SQL Server笔记 -- 第14章:CASE语句
数据库·笔记·sql·microsoft·sqlserver
宵时待雨1 小时前
STM32笔记归纳8:时钟
笔记·stm32·单片机·嵌入式硬件
JicasdC123asd2 小时前
【深度学习实战】基于Mask-RCNN和HRNetV2P的腰果智能分级系统_1
人工智能·深度学习
陈天伟教授2 小时前
人工智能应用- 语言理解:07.大语言模型
人工智能·深度学习·语言模型