使用YOLOv11进行视频目标检测

使用YOLOv11进行视频目标检测

完整代码

bash 复制代码
import cv2
from ultralytics import YOLO

def predict(chosen_model, img, classes=[], conf=0.5):
    if classes:
        results = chosen_model.predict(img, classes=classes, conf=conf)
    else:
        results = chosen_model.predict(img, conf=conf)

    return results

def predict_and_detect(chosen_model, img, classes=[], conf=0.5, rectangle_thickness=2, text_thickness=1):
    results = predict(chosen_model, img, classes, conf=conf)
    for result in results:
        for box in result.boxes:
            cv2.rectangle(img, (int(box.xyxy[0][0]), int(box.xyxy[0][1])),
                          (int(box.xyxy[0][2]), int(box.xyxy[0][3])), (255, 0, 0), rectangle_thickness)
            cv2.putText(img, f"{result.names[int(box.cls[0])]}",
                        (int(box.xyxy[0][0]), int(box.xyxy[0][1]) - 10),
                        cv2.FONT_HERSHEY_PLAIN, 1, (255, 0, 0), text_thickness)
    return img, results

# defining function for creating a writer (for mp4 videos)
def create_video_writer(video_cap, output_filename):
    # grab the width, height, and fps of the frames in the video stream.
    frame_width = int(video_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    frame_height = int(video_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    fps = int(video_cap.get(cv2.CAP_PROP_FPS))
    # initialize the FourCC and a video writer object
    fourcc = cv2.VideoWriter_fourcc(*'MP4V')
    writer = cv2.VideoWriter(output_filename, fourcc, fps,
                             (frame_width, frame_height))
    return writer

model = YOLO("yolo11x.pt")

output_filename = "YourFilename.mp4"

video_path = r"YourVideoPath.mp4"
cap = cv2.VideoCapture(video_path)
writer = create_video_writer(cap, output_filename)
while True:
    success, img = cap.read()
    if not success:
        break
    result_img, _ = predict_and_detect(model, img, classes=[], conf=0.5)
    writer.write(result_img)
    cv2.imshow("Image", result_img)
    
    cv2.waitKey(1)
writer.release()

参考资料:

1.https://blog.csdn.net/qq_42589613/article/details/142729428

2.https://blog.csdn.net/java1314777/article/details/142665078

相关推荐
懷淰メ6 小时前
python3GUI--【AI加持】基于PyQt5+YOLOv8+DeepSeek的智能球体检测系统:(详细介绍)
yolo·目标检测·计算机视觉·pyqt·检测系统·deepseek·球体检测
CV实验室13 小时前
CV论文速递:覆盖视频生成与理解、3D视觉与运动迁移、多模态与跨模态智能、专用场景视觉技术等方向 (11.17-11.21)
人工智能·计算机视觉·3d·论文·音视频·视频生成
FinelyYang16 小时前
uniapp+unipush2.0+WebRTC实现h5一对一视频通话
uni-app·音视频·webrtc
4***R24018 小时前
C++在音视频处理中的库
开发语言·c++·音视频
Docda20 小时前
批量视频数据或高质量图片数据下载
音视频
顾道长生'20 小时前
(Arxiv-2025)MAGREF:用于任意参考视频生成的掩码引导与主体解耦
音视频
m0_6265352020 小时前
代码分析 长音频分割为短音频
javascript·python·音视频
Black蜡笔小新20 小时前
视频融合平台EasyCVR远程监控技术在沙尘暴交通监控中的应用
音视频
EasyCVR1 天前
视频汇聚平台EasyCVR赋能石油管道计量站精准监控与安全管理
安全·音视频
4***99741 天前
React音频处理案例
前端·react.js·音视频