机器学习笔记(三)-模型评估与选择后半部分

1、性能度量

定义:衡量模型泛化能力的评价标准。

结果:不取决于算法和数据,取决于任务需求。

1.1 回归任务常用的性能度量:

均方误差

1.2 分类任务常用的性能度量:

1.2.1 错误率、精度:适用于二分类和多分类任务(关注错判的概率)

1.2.2 查准率、查全率 :关注正确的多少被选出,可以构建查准率-查全率曲线,简称P-R曲线,查准率=查全率时的点称为平衡点(BEP,目前有很多更简化的度量方法),当存在多个二分类混淆矩阵时,可以用宏查准率和宏查全率。

ps:混淆矩阵,根据分类情况划分,真正例、假正例、真反例、假反例。

1.2.3 ROC和AUC:

**ROC曲线:**综合考虑学习器在不同任务下的期望泛化性能好坏,或者说,一般性能的好坏(很多学习器为测试样本产生一个实值或者概率预测,并将其与阈值进行比较,确定正反类,实值或者概率预测决定学习器的泛化能力,据此,可以将样例排序,根据不同任务利用截断点划分样本)

**AUC:**在两条ROC曲线交叉情况下,利用AUC方法,即比较ROC曲线下的面积

1.2.4 代价敏感错误率和代价曲线:

真实任务存在非均等代价,不同错误造成的后果不同,且希望总体代价最小,代价曲线可以反应学习器的期望总体代价。

2、比较检验

我们想要比较的泛化性能,但是实验评估得到的是在测试集上的性能,两者未必相同,且测试集上的性能跟测试集本身的选择有很大的关系。

2.1 假设检验

2.2 交叉检验t检验

2.3 McNemar检验

2.4 Friedman和Nemenyi检验

2.5 偏差与方差

相关推荐
leijiwen1 分钟前
Bsin X BDCM:从流量驱动到价值激励驱动的智能增长引擎
大数据·人工智能·web3
人工智能训练1 分钟前
Linux 系统核心快捷键表(可打印版)
linux·运维·服务器·人工智能·ubuntu·容器·openeuler
得贤招聘官4 分钟前
AI 重构招聘:从效率到精准决策
人工智能·重构
言言的底层世界17 分钟前
c++中STL容器及算法等
开发语言·c++·经验分享·笔记
高锰酸钾_20 分钟前
机器学习基础 | KNN(K-近邻)
人工智能·机器学习
人邮异步社区21 分钟前
想要系统地学习扩散模型,应该怎么去做?
人工智能·学习·程序员·扩散模型
光头程序员21 分钟前
vue学习笔记
vue.js·笔记·学习
1***y17824 分钟前
区块链跨链桥、 跨链桥到底在解决什么问题?
大数据·人工智能·区块链
腾飞开源25 分钟前
09_Spring AI 干货笔记之多模态
图像处理·人工智能·spring ai·多模态大语言模型·多模态api·媒体输入·文本响应
客梦29 分钟前
数据结构-树结构
数据结构·笔记