机器学习笔记(三)-模型评估与选择后半部分

1、性能度量

定义:衡量模型泛化能力的评价标准。

结果:不取决于算法和数据,取决于任务需求。

1.1 回归任务常用的性能度量:

均方误差

1.2 分类任务常用的性能度量:

1.2.1 错误率、精度:适用于二分类和多分类任务(关注错判的概率)

1.2.2 查准率、查全率 :关注正确的多少被选出,可以构建查准率-查全率曲线,简称P-R曲线,查准率=查全率时的点称为平衡点(BEP,目前有很多更简化的度量方法),当存在多个二分类混淆矩阵时,可以用宏查准率和宏查全率。

ps:混淆矩阵,根据分类情况划分,真正例、假正例、真反例、假反例。

1.2.3 ROC和AUC:

**ROC曲线:**综合考虑学习器在不同任务下的期望泛化性能好坏,或者说,一般性能的好坏(很多学习器为测试样本产生一个实值或者概率预测,并将其与阈值进行比较,确定正反类,实值或者概率预测决定学习器的泛化能力,据此,可以将样例排序,根据不同任务利用截断点划分样本)

**AUC:**在两条ROC曲线交叉情况下,利用AUC方法,即比较ROC曲线下的面积

1.2.4 代价敏感错误率和代价曲线:

真实任务存在非均等代价,不同错误造成的后果不同,且希望总体代价最小,代价曲线可以反应学习器的期望总体代价。

2、比较检验

我们想要比较的泛化性能,但是实验评估得到的是在测试集上的性能,两者未必相同,且测试集上的性能跟测试集本身的选择有很大的关系。

2.1 假设检验

2.2 交叉检验t检验

2.3 McNemar检验

2.4 Friedman和Nemenyi检验

2.5 偏差与方差

相关推荐
赋创小助手4 分钟前
NVIDIA B200 GPU 技术解读:Blackwell 架构带来了哪些真实变化?
运维·服务器·人工智能·深度学习·计算机视觉·自然语言处理·架构
中屹指纹浏览器7 分钟前
指纹浏览器技术落地实践:多场景适配与性能优化全解析
经验分享·笔记
newbiai12 分钟前
小白用的AI视频创作软件哪个功能全?
人工智能·python
love530love14 分钟前
【实战经验】解决ComfyUI加载报错:PytorchStreamReader failed reading zip archive: failed finding central directory
人工智能·windows·python·ai作画·aigc·comfyui·攻关
玄同76514 分钟前
LangChain 1.0 框架全面解析:从架构到实践
人工智能·深度学习·自然语言处理·中间件·架构·langchain·rag
资深数据库专家15 分钟前
人大金仓(Kingbase)在 MPP(大规模并行处理)线程设置建议
人工智能·微信公众平台·新浪微博·微信开放平台·人大金仓
AAD5558889915 分钟前
工业纸板加工过程中的检测与识别_Cornernet_Hourglass104模型应用
人工智能·计算机视觉·目标跟踪
觅特科技-互站16 分钟前
陌讯AI视觉赋能政企园区:国家级高新区实现人流超限自动广播与工单闭环
人工智能·排序算法·线性回归
Kevin-anycode23 分钟前
国内安装Claude Code即配置国内大模型(win11环境)
人工智能·语言模型
央链知播23 分钟前
中国移联AI元宇宙产业委与黎阳之光共识“链上诗路-时光门”战略合作
人工智能·业界资讯·数字孪生