机器学习笔记(三)-模型评估与选择后半部分

1、性能度量

定义:衡量模型泛化能力的评价标准。

结果:不取决于算法和数据,取决于任务需求。

1.1 回归任务常用的性能度量:

均方误差

1.2 分类任务常用的性能度量:

1.2.1 错误率、精度:适用于二分类和多分类任务(关注错判的概率)

1.2.2 查准率、查全率 :关注正确的多少被选出,可以构建查准率-查全率曲线,简称P-R曲线,查准率=查全率时的点称为平衡点(BEP,目前有很多更简化的度量方法),当存在多个二分类混淆矩阵时,可以用宏查准率和宏查全率。

ps:混淆矩阵,根据分类情况划分,真正例、假正例、真反例、假反例。

1.2.3 ROC和AUC:

**ROC曲线:**综合考虑学习器在不同任务下的期望泛化性能好坏,或者说,一般性能的好坏(很多学习器为测试样本产生一个实值或者概率预测,并将其与阈值进行比较,确定正反类,实值或者概率预测决定学习器的泛化能力,据此,可以将样例排序,根据不同任务利用截断点划分样本)

**AUC:**在两条ROC曲线交叉情况下,利用AUC方法,即比较ROC曲线下的面积

1.2.4 代价敏感错误率和代价曲线:

真实任务存在非均等代价,不同错误造成的后果不同,且希望总体代价最小,代价曲线可以反应学习器的期望总体代价。

2、比较检验

我们想要比较的泛化性能,但是实验评估得到的是在测试集上的性能,两者未必相同,且测试集上的性能跟测试集本身的选择有很大的关系。

2.1 假设检验

2.2 交叉检验t检验

2.3 McNemar检验

2.4 Friedman和Nemenyi检验

2.5 偏差与方差

相关推荐
996终结者22 分钟前
深度学习从入门到精通(一):深度学习的分类
人工智能·深度学习·分类
长桥夜波23 分钟前
【第二十一周】机器学习周报
人工智能·机器学习
GIOTTO情23 分钟前
舆情处置技术深度解析:Infoseek 字节探索的 AI 闭环架构与实现逻辑
人工智能·架构
KG_LLM图谱增强大模型1 小时前
突破AI助手成本壁垒:知识图谱思维架构让小模型实现大性能
人工智能·架构·大模型·知识图谱·graphrag
喜欢吃豆1 小时前
[特殊字符] 深入解构 Assistants API:从“黑盒”抽象到“显式”控制的架构演进与终极指南
网络·人工智能·自然语言处理·架构·大模型
好望角雾眠1 小时前
第四阶段C#通讯开发-5:TCP
网络·笔记·网络协议·tcp/ip·c#
深圳南柯电子1 小时前
深圳南柯电子|医疗电子EMC整改:助医疗器械安全稳定的关键环节
网络·人工智能·安全·互联网·实验室·emc
张较瘦_1 小时前
[论文阅读] AI + 职业教育 | 从框架到实践:职业院校教师人工智能素养提升的完整方案
论文阅读·人工智能
三品吉他手会点灯1 小时前
stm32f103学习笔记-16-RCC(第2节)-讲解系统时钟配置函数SetSysClockTo72()
笔记·stm32·单片机·嵌入式硬件·学习
仙人掌_lz2 小时前
Kimi Linear 论文阅读笔记:第一次“线性注意力”全面胜过全注意力
论文阅读·笔记