机器学习笔记(三)-模型评估与选择后半部分

1、性能度量

定义:衡量模型泛化能力的评价标准。

结果:不取决于算法和数据,取决于任务需求。

1.1 回归任务常用的性能度量:

均方误差

1.2 分类任务常用的性能度量:

1.2.1 错误率、精度:适用于二分类和多分类任务(关注错判的概率)

1.2.2 查准率、查全率 :关注正确的多少被选出,可以构建查准率-查全率曲线,简称P-R曲线,查准率=查全率时的点称为平衡点(BEP,目前有很多更简化的度量方法),当存在多个二分类混淆矩阵时,可以用宏查准率和宏查全率。

ps:混淆矩阵,根据分类情况划分,真正例、假正例、真反例、假反例。

1.2.3 ROC和AUC:

**ROC曲线:**综合考虑学习器在不同任务下的期望泛化性能好坏,或者说,一般性能的好坏(很多学习器为测试样本产生一个实值或者概率预测,并将其与阈值进行比较,确定正反类,实值或者概率预测决定学习器的泛化能力,据此,可以将样例排序,根据不同任务利用截断点划分样本)

**AUC:**在两条ROC曲线交叉情况下,利用AUC方法,即比较ROC曲线下的面积

1.2.4 代价敏感错误率和代价曲线:

真实任务存在非均等代价,不同错误造成的后果不同,且希望总体代价最小,代价曲线可以反应学习器的期望总体代价。

2、比较检验

我们想要比较的泛化性能,但是实验评估得到的是在测试集上的性能,两者未必相同,且测试集上的性能跟测试集本身的选择有很大的关系。

2.1 假设检验

2.2 交叉检验t检验

2.3 McNemar检验

2.4 Friedman和Nemenyi检验

2.5 偏差与方差

相关推荐
雨大王5128 小时前
智能仓储系统在汽车零部件管理中的应用
人工智能·汽车·制造
神气龙8 小时前
Dify试用
人工智能
WLJT1231231238 小时前
品质配件与专业维保筑牢安全发展根基
大数据·人工智能·科技·安全·生活
深圳南柯电子8 小时前
深圳南柯电子|EMC电磁兼容测试系统:5G时代应对频段的干扰挑战
网络·人工智能·互联网·实验室·emc
狐578 小时前
2026-01-12-LeetCode刷题笔记-1266-访问所有点的最小时间.md
笔记·算法·leetcode
小郭团队8 小时前
教育公平的探索
大数据·人工智能·嵌入式硬件·算法·硬件架构
狐578 小时前
2026-01-11-云计算总复习-期末复习
笔记·云计算·期末复习
驭白.8 小时前
从订单到行驶:构建新能源汽车产品全生命周期数据链
人工智能·汽车·制造·数字化·制造业·新能源汽车
西门吹牛8 小时前
openwrt学习笔记
linux·笔记·学习
Watermelo6178 小时前
探究TOON的价值边界:比JSON更优的大模型友好数据格式?
数据结构·人工智能·语言模型·自然语言处理·数据挖掘·数据分析·json