机器学习笔记(三)-模型评估与选择后半部分

1、性能度量

定义:衡量模型泛化能力的评价标准。

结果:不取决于算法和数据,取决于任务需求。

1.1 回归任务常用的性能度量:

均方误差

1.2 分类任务常用的性能度量:

1.2.1 错误率、精度:适用于二分类和多分类任务(关注错判的概率)

1.2.2 查准率、查全率 :关注正确的多少被选出,可以构建查准率-查全率曲线,简称P-R曲线,查准率=查全率时的点称为平衡点(BEP,目前有很多更简化的度量方法),当存在多个二分类混淆矩阵时,可以用宏查准率和宏查全率。

ps:混淆矩阵,根据分类情况划分,真正例、假正例、真反例、假反例。

1.2.3 ROC和AUC:

**ROC曲线:**综合考虑学习器在不同任务下的期望泛化性能好坏,或者说,一般性能的好坏(很多学习器为测试样本产生一个实值或者概率预测,并将其与阈值进行比较,确定正反类,实值或者概率预测决定学习器的泛化能力,据此,可以将样例排序,根据不同任务利用截断点划分样本)

**AUC:**在两条ROC曲线交叉情况下,利用AUC方法,即比较ROC曲线下的面积

1.2.4 代价敏感错误率和代价曲线:

真实任务存在非均等代价,不同错误造成的后果不同,且希望总体代价最小,代价曲线可以反应学习器的期望总体代价。

2、比较检验

我们想要比较的泛化性能,但是实验评估得到的是在测试集上的性能,两者未必相同,且测试集上的性能跟测试集本身的选择有很大的关系。

2.1 假设检验

2.2 交叉检验t检验

2.3 McNemar检验

2.4 Friedman和Nemenyi检验

2.5 偏差与方差

相关推荐
永霖光电_UVLED3 小时前
NUBURU启动Q1阶段,实现40套高功率蓝光激光系统的量产
大数据·人工智能
RFG20123 小时前
20、详解Dubbo框架:消费方如何动态获取服务提供方地址?【微服务架构入门】
java·人工智能·后端·微服务·云原生·架构·dubbo
紫微AI4 小时前
适用于代理Agents的语言
人工智能·agents·新语言
CCPC不拿奖不改名4 小时前
虚拟机基础:在VMware WorkStation上安装Linux为容器化部署打基础
linux·运维·服务器·人工智能·milvus·知识库搭建·容器化部署
这是个栗子4 小时前
AI辅助编程工具(六) - CodeGeeX
人工智能·ai·codegeex
vortesnail4 小时前
超详细的云服务部署 OpenClaw 并接入飞书全流程,别再趟坑了
人工智能·程序员·openai
紫微AI4 小时前
Anthropic Claude Code 工程博客精读:构建可靠长时运行AI代理的有效框架实践
人工智能
量子-Alex4 小时前
【大模型思维链】自洽性提升语言模型中的思维链推理能力
人工智能·语言模型·自然语言处理
月光有害5 小时前
Batch 与 Mini-Batch 梯度下降的权衡与选择
人工智能
之歆5 小时前
智能体 - AI 幻觉
人工智能