机器学习笔记(三)-模型评估与选择后半部分

1、性能度量

定义:衡量模型泛化能力的评价标准。

结果:不取决于算法和数据,取决于任务需求。

1.1 回归任务常用的性能度量:

均方误差

1.2 分类任务常用的性能度量:

1.2.1 错误率、精度:适用于二分类和多分类任务(关注错判的概率)

1.2.2 查准率、查全率 :关注正确的多少被选出,可以构建查准率-查全率曲线,简称P-R曲线,查准率=查全率时的点称为平衡点(BEP,目前有很多更简化的度量方法),当存在多个二分类混淆矩阵时,可以用宏查准率和宏查全率。

ps:混淆矩阵,根据分类情况划分,真正例、假正例、真反例、假反例。

1.2.3 ROC和AUC:

**ROC曲线:**综合考虑学习器在不同任务下的期望泛化性能好坏,或者说,一般性能的好坏(很多学习器为测试样本产生一个实值或者概率预测,并将其与阈值进行比较,确定正反类,实值或者概率预测决定学习器的泛化能力,据此,可以将样例排序,根据不同任务利用截断点划分样本)

**AUC:**在两条ROC曲线交叉情况下,利用AUC方法,即比较ROC曲线下的面积

1.2.4 代价敏感错误率和代价曲线:

真实任务存在非均等代价,不同错误造成的后果不同,且希望总体代价最小,代价曲线可以反应学习器的期望总体代价。

2、比较检验

我们想要比较的泛化性能,但是实验评估得到的是在测试集上的性能,两者未必相同,且测试集上的性能跟测试集本身的选择有很大的关系。

2.1 假设检验

2.2 交叉检验t检验

2.3 McNemar检验

2.4 Friedman和Nemenyi检验

2.5 偏差与方差

相关推荐
XiongLiding6 分钟前
我的第一个MCP,以及开发过程中的经验感悟
人工智能
三花AI20 分钟前
阿里 20B 参数 Qwen-Image-Edit 全能图像编辑模型
人工智能
EthanLifeGreat33 分钟前
ParallelWaveGAN-KaldiFree:纯Pytorch的PWG
人工智能·pytorch·深度学习·音频·语音识别
盏灯40 分钟前
据说,80%的人都搞不懂MCP底层?
人工智能·aigc·mcp
机器之心40 分钟前
机器人也会「摸鱼」了?宇树G1赛后葛优瘫刷美女视频,网友:比人还懂享受生活
人工智能·openai
胡耀超41 分钟前
从哲学(业务)视角看待数据挖掘:从认知到实践的螺旋上升
人工智能·python·数据挖掘·大模型·特征工程·crisp-dm螺旋认知·批判性思维
新智元44 分钟前
Meta没做的,英伟达做了!全新架构吞吐量狂飙6倍,20万亿Token训练
人工智能·openai
新智元44 分钟前
Hinton 预言成真!AI 接管美国一半白领,牛津哈佛扎堆转行做技工
人工智能·openai
aneasystone本尊1 小时前
学习 Coze Studio 的知识库入库逻辑
人工智能
然我1 小时前
从 “只会聊天” 到 “能办实事”:OpenAI Function Call 彻底重构 AI 交互逻辑(附完整接入指南)
前端·javascript·人工智能