机器学习笔记(三)-模型评估与选择后半部分

1、性能度量

定义:衡量模型泛化能力的评价标准。

结果:不取决于算法和数据,取决于任务需求。

1.1 回归任务常用的性能度量:

均方误差

1.2 分类任务常用的性能度量:

1.2.1 错误率、精度:适用于二分类和多分类任务(关注错判的概率)

1.2.2 查准率、查全率 :关注正确的多少被选出,可以构建查准率-查全率曲线,简称P-R曲线,查准率=查全率时的点称为平衡点(BEP,目前有很多更简化的度量方法),当存在多个二分类混淆矩阵时,可以用宏查准率和宏查全率。

ps:混淆矩阵,根据分类情况划分,真正例、假正例、真反例、假反例。

1.2.3 ROC和AUC:

**ROC曲线:**综合考虑学习器在不同任务下的期望泛化性能好坏,或者说,一般性能的好坏(很多学习器为测试样本产生一个实值或者概率预测,并将其与阈值进行比较,确定正反类,实值或者概率预测决定学习器的泛化能力,据此,可以将样例排序,根据不同任务利用截断点划分样本)

**AUC:**在两条ROC曲线交叉情况下,利用AUC方法,即比较ROC曲线下的面积

1.2.4 代价敏感错误率和代价曲线:

真实任务存在非均等代价,不同错误造成的后果不同,且希望总体代价最小,代价曲线可以反应学习器的期望总体代价。

2、比较检验

我们想要比较的泛化性能,但是实验评估得到的是在测试集上的性能,两者未必相同,且测试集上的性能跟测试集本身的选择有很大的关系。

2.1 假设检验

2.2 交叉检验t检验

2.3 McNemar检验

2.4 Friedman和Nemenyi检验

2.5 偏差与方差

相关推荐
轴测君9 分钟前
SE Block(Squeeze and Excitation Block)
深度学习·机器学习·计算机视觉
三伏52212 分钟前
Cortex-M3重启流程——笔记
笔记·cortex-m3
正宗咸豆花15 分钟前
LangGraph实战:构建可自愈的多智能体客服系统架构
人工智能·系统架构·claude
檐下翻书17318 分钟前
文本创作进化:从辅助写作到内容策划的全面赋能
人工智能
仙人掌_lz31 分钟前
AI代理记忆设计指南:从单一特征到完整系统,打造可靠智能体
人工智能
昨日之日200639 分钟前
Qwen3-TTS - 一句话指挥AI配音 自由定制你的专属声音 十种语言随心说 支持50系显卡 一键整合包下载
人工智能
创客匠人老蒋43 分钟前
AI赋能创始人表达:从个人智慧到组织能力的战略跃迁
人工智能·创始人ip·创客匠人
搞科研的小刘选手1 小时前
【数字经济专题会议】第三届粤港澳大湾区数字经济与人工智能国际学术会议(DEAI 2026)
人工智能·aigc·软件工程·电子商务·数字经济·经济学·学术会议
星爷AG I1 小时前
9-12 场景感知(AGI基础理论)
人工智能·agi
lyx49491 小时前
Open Interpreter + 智谱GLM-4:零基础搭建能操控电脑的 AI Agent
人工智能·agent·ai本地助手