机器学习笔记(三)-模型评估与选择后半部分

1、性能度量

定义:衡量模型泛化能力的评价标准。

结果:不取决于算法和数据,取决于任务需求。

1.1 回归任务常用的性能度量:

均方误差

1.2 分类任务常用的性能度量:

1.2.1 错误率、精度:适用于二分类和多分类任务(关注错判的概率)

1.2.2 查准率、查全率 :关注正确的多少被选出,可以构建查准率-查全率曲线,简称P-R曲线,查准率=查全率时的点称为平衡点(BEP,目前有很多更简化的度量方法),当存在多个二分类混淆矩阵时,可以用宏查准率和宏查全率。

ps:混淆矩阵,根据分类情况划分,真正例、假正例、真反例、假反例。

1.2.3 ROC和AUC:

**ROC曲线:**综合考虑学习器在不同任务下的期望泛化性能好坏,或者说,一般性能的好坏(很多学习器为测试样本产生一个实值或者概率预测,并将其与阈值进行比较,确定正反类,实值或者概率预测决定学习器的泛化能力,据此,可以将样例排序,根据不同任务利用截断点划分样本)

**AUC:**在两条ROC曲线交叉情况下,利用AUC方法,即比较ROC曲线下的面积

1.2.4 代价敏感错误率和代价曲线:

真实任务存在非均等代价,不同错误造成的后果不同,且希望总体代价最小,代价曲线可以反应学习器的期望总体代价。

2、比较检验

我们想要比较的泛化性能,但是实验评估得到的是在测试集上的性能,两者未必相同,且测试集上的性能跟测试集本身的选择有很大的关系。

2.1 假设检验

2.2 交叉检验t检验

2.3 McNemar检验

2.4 Friedman和Nemenyi检验

2.5 偏差与方差

相关推荐
张拭心26 分钟前
Cursor 又偷偷更新,这个功能太实用:Visual Editor for Cursor Browser
前端·人工智能
吴佳浩1 小时前
大模型 MoE,你明白了么?
人工智能·llm
im_AMBER2 小时前
Leetcode 74 K 和数对的最大数目
数据结构·笔记·学习·算法·leetcode
Blossom.1182 小时前
基于Embedding+图神经网络的开源软件供应链漏洞检测:从SBOM到自动修复的完整实践
人工智能·分布式·深度学习·神经网络·copilot·开源软件·embedding
t198751282 小时前
电力系统经典节点系统潮流计算MATLAB实现
人工智能·算法·matlab
万悉科技3 小时前
比 Profound 更适合中国企业的GEO产品
大数据·人工智能
断剑zou天涯3 小时前
【算法笔记】蓄水池算法
笔记·算法
mqiqe3 小时前
vLLM(vLLM.ai)生产环境部署大模型
人工智能·vllm
V1ncent Chen3 小时前
机器是如何“洞察“世界的?:深度学习
人工智能·深度学习
AI营销前沿3 小时前
中国AI营销专家深度解析:谁在定义AI营销的未来?
人工智能