机器学习笔记(三)-模型评估与选择后半部分

1、性能度量

定义:衡量模型泛化能力的评价标准。

结果:不取决于算法和数据,取决于任务需求。

1.1 回归任务常用的性能度量:

均方误差

1.2 分类任务常用的性能度量:

1.2.1 错误率、精度:适用于二分类和多分类任务(关注错判的概率)

1.2.2 查准率、查全率 :关注正确的多少被选出,可以构建查准率-查全率曲线,简称P-R曲线,查准率=查全率时的点称为平衡点(BEP,目前有很多更简化的度量方法),当存在多个二分类混淆矩阵时,可以用宏查准率和宏查全率。

ps:混淆矩阵,根据分类情况划分,真正例、假正例、真反例、假反例。

1.2.3 ROC和AUC:

**ROC曲线:**综合考虑学习器在不同任务下的期望泛化性能好坏,或者说,一般性能的好坏(很多学习器为测试样本产生一个实值或者概率预测,并将其与阈值进行比较,确定正反类,实值或者概率预测决定学习器的泛化能力,据此,可以将样例排序,根据不同任务利用截断点划分样本)

**AUC:**在两条ROC曲线交叉情况下,利用AUC方法,即比较ROC曲线下的面积

1.2.4 代价敏感错误率和代价曲线:

真实任务存在非均等代价,不同错误造成的后果不同,且希望总体代价最小,代价曲线可以反应学习器的期望总体代价。

2、比较检验

我们想要比较的泛化性能,但是实验评估得到的是在测试集上的性能,两者未必相同,且测试集上的性能跟测试集本身的选择有很大的关系。

2.1 假设检验

2.2 交叉检验t检验

2.3 McNemar检验

2.4 Friedman和Nemenyi检验

2.5 偏差与方差

相关推荐
汗流浃背了吧,老弟!6 分钟前
SFT(监督式微调)
人工智能
zl_vslam7 分钟前
SLAM中的非线性优-3D图优化之相对位姿Between Factor位姿图优化(十三)
人工智能·算法·计算机视觉·3d
Xy-unu12 分钟前
Analog optical computer for AI inference and combinatorial optimization
论文阅读·人工智能
小马过河R14 分钟前
混元世界模型1.5架构原理初探
人工智能·语言模型·架构·nlp
三万棵雪松16 分钟前
【AI小智后端部分(一)】
人工智能·python·ai小智
编程小Y17 分钟前
Adobe Animate 2024:2D 矢量动画与交互创作利器下载安装教程
人工智能
laplace012318 分钟前
Part 3:模型调用、记忆管理与工具调用流程(LangChain 1.0)笔记(Markdown)
开发语言·人工智能·笔记·python·langchain·prompt
mys551825 分钟前
杨建允:AI搜索优化对汽车服务行业获客的影响
人工智能·aigc·geo·ai搜索优化·ai引擎优化
2501_9361460429 分钟前
鱼类识别与分类:基于freeanchor_x101-32x4d_fpn_1x_coco的三种鱼类自动检测
人工智能·分类·数据挖掘
鲨莎分不晴30 分钟前
拯救暗淡图像:深度解析直方图均衡化(原理、公式与计算)
人工智能·算法·机器学习