机器学习笔记(三)-模型评估与选择后半部分

1、性能度量

定义:衡量模型泛化能力的评价标准。

结果:不取决于算法和数据,取决于任务需求。

1.1 回归任务常用的性能度量:

均方误差

1.2 分类任务常用的性能度量:

1.2.1 错误率、精度:适用于二分类和多分类任务(关注错判的概率)

1.2.2 查准率、查全率 :关注正确的多少被选出,可以构建查准率-查全率曲线,简称P-R曲线,查准率=查全率时的点称为平衡点(BEP,目前有很多更简化的度量方法),当存在多个二分类混淆矩阵时,可以用宏查准率和宏查全率。

ps:混淆矩阵,根据分类情况划分,真正例、假正例、真反例、假反例。

1.2.3 ROC和AUC:

**ROC曲线:**综合考虑学习器在不同任务下的期望泛化性能好坏,或者说,一般性能的好坏(很多学习器为测试样本产生一个实值或者概率预测,并将其与阈值进行比较,确定正反类,实值或者概率预测决定学习器的泛化能力,据此,可以将样例排序,根据不同任务利用截断点划分样本)

**AUC:**在两条ROC曲线交叉情况下,利用AUC方法,即比较ROC曲线下的面积

1.2.4 代价敏感错误率和代价曲线:

真实任务存在非均等代价,不同错误造成的后果不同,且希望总体代价最小,代价曲线可以反应学习器的期望总体代价。

2、比较检验

我们想要比较的泛化性能,但是实验评估得到的是在测试集上的性能,两者未必相同,且测试集上的性能跟测试集本身的选择有很大的关系。

2.1 假设检验

2.2 交叉检验t检验

2.3 McNemar检验

2.4 Friedman和Nemenyi检验

2.5 偏差与方差

相关推荐
许泽宇的技术分享1 分钟前
AgentFramework-零基础入门-第08章_部署和监控代理
人工智能·后端·agent框架·agentframework
数据与后端架构提升之路6 分钟前
Map-World:用“填空”与“路径积分”重构自动驾驶规划范式
人工智能·自动驾驶·世界模型·锚点预测
陈天伟教授10 分钟前
机器学习方法(4)强化学习(试错学习)
人工智能·学习·机器学习
青瓷程序设计21 分钟前
【宠物识别系统】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
IT_陈寒22 分钟前
Python开发者必看:5个被低估但能提升200%编码效率的冷门库实战
前端·人工智能·后端
徽44037 分钟前
农田植被目标检测数据标注与模型训练总结1
人工智能·目标检测·计算机视觉
千里念行客24038 分钟前
国产射频芯片“小巨人”昂瑞微今日招股 拟于12月5日进行申购
大数据·前端·人工智能·科技
客梦41 分钟前
Java 道路信息系统
java·笔记
余蓝41 分钟前
本地部署!文生图LCM超简单教程
图像处理·人工智能·深度学习·ai作画·stable diffusion·dall·e 2
千里念行客24043 分钟前
昂瑞微将于12月2日初步询价 助推国产射频芯片自主创新
人工智能·科技·社交电子·api·电子