机器学习笔记(三)-模型评估与选择后半部分

1、性能度量

定义:衡量模型泛化能力的评价标准。

结果:不取决于算法和数据,取决于任务需求。

1.1 回归任务常用的性能度量:

均方误差

1.2 分类任务常用的性能度量:

1.2.1 错误率、精度:适用于二分类和多分类任务(关注错判的概率)

1.2.2 查准率、查全率 :关注正确的多少被选出,可以构建查准率-查全率曲线,简称P-R曲线,查准率=查全率时的点称为平衡点(BEP,目前有很多更简化的度量方法),当存在多个二分类混淆矩阵时,可以用宏查准率和宏查全率。

ps:混淆矩阵,根据分类情况划分,真正例、假正例、真反例、假反例。

1.2.3 ROC和AUC:

**ROC曲线:**综合考虑学习器在不同任务下的期望泛化性能好坏,或者说,一般性能的好坏(很多学习器为测试样本产生一个实值或者概率预测,并将其与阈值进行比较,确定正反类,实值或者概率预测决定学习器的泛化能力,据此,可以将样例排序,根据不同任务利用截断点划分样本)

**AUC:**在两条ROC曲线交叉情况下,利用AUC方法,即比较ROC曲线下的面积

1.2.4 代价敏感错误率和代价曲线:

真实任务存在非均等代价,不同错误造成的后果不同,且希望总体代价最小,代价曲线可以反应学习器的期望总体代价。

2、比较检验

我们想要比较的泛化性能,但是实验评估得到的是在测试集上的性能,两者未必相同,且测试集上的性能跟测试集本身的选择有很大的关系。

2.1 假设检验

2.2 交叉检验t检验

2.3 McNemar检验

2.4 Friedman和Nemenyi检验

2.5 偏差与方差

相关推荐
星梦客14 小时前
FRP 内网穿透工具部署教程
网络·经验分享·笔记
iiiiii1114 小时前
【论文阅读笔记】FOCAL 离线元强化学习,从静态数据中快速适应新任务
论文阅读·人工智能·笔记·学习·机器学习·学习方法·具身智能
百胜软件@百胜软件14 小时前
百胜软件×头部影院:以数字之力,重塑影院零售新体验
人工智能
小肖爱笑不爱笑14 小时前
LSDSSMs: 基于低秩稀疏分解状态空间模型的红外小目标检测网络(2025, TGRS)
人工智能·目标检测·计算机视觉
荒野火狐14 小时前
【强化学习】关于PPO收敛问题
python·深度学习·机器学习·强化学习
gallonyin14 小时前
【AI智能体】Claude Code 工具架构核心解析:大道至简
人工智能·架构·智能体
江上鹤.14814 小时前
Day 28 复习日
人工智能·python·机器学习
Apache Flink14 小时前
Apache Flink 2.2.0: 推动实时数据与人工智能融合,赋能AI时代的流处理
人工智能·搜索引擎·百度·flink·apache
小二·14 小时前
DeepSeek应该怎样提问?
人工智能