机器学习笔记(三)-模型评估与选择后半部分

1、性能度量

定义:衡量模型泛化能力的评价标准。

结果:不取决于算法和数据,取决于任务需求。

1.1 回归任务常用的性能度量:

均方误差

1.2 分类任务常用的性能度量:

1.2.1 错误率、精度:适用于二分类和多分类任务(关注错判的概率)

1.2.2 查准率、查全率 :关注正确的多少被选出,可以构建查准率-查全率曲线,简称P-R曲线,查准率=查全率时的点称为平衡点(BEP,目前有很多更简化的度量方法),当存在多个二分类混淆矩阵时,可以用宏查准率和宏查全率。

ps:混淆矩阵,根据分类情况划分,真正例、假正例、真反例、假反例。

1.2.3 ROC和AUC:

**ROC曲线:**综合考虑学习器在不同任务下的期望泛化性能好坏,或者说,一般性能的好坏(很多学习器为测试样本产生一个实值或者概率预测,并将其与阈值进行比较,确定正反类,实值或者概率预测决定学习器的泛化能力,据此,可以将样例排序,根据不同任务利用截断点划分样本)

**AUC:**在两条ROC曲线交叉情况下,利用AUC方法,即比较ROC曲线下的面积

1.2.4 代价敏感错误率和代价曲线:

真实任务存在非均等代价,不同错误造成的后果不同,且希望总体代价最小,代价曲线可以反应学习器的期望总体代价。

2、比较检验

我们想要比较的泛化性能,但是实验评估得到的是在测试集上的性能,两者未必相同,且测试集上的性能跟测试集本身的选择有很大的关系。

2.1 假设检验

2.2 交叉检验t检验

2.3 McNemar检验

2.4 Friedman和Nemenyi检验

2.5 偏差与方差

相关推荐
骚戴1 天前
LLM API 全方位实战指南:从 AI 大模型API选型到高效应用开发(2025年12月)
人工智能·大模型·llm·api·ai gateway
FL16238631291 天前
轴承表面缺陷检测数据集VOC+YOLO格式2064张8类别
人工智能·yolo·机器学习
岁月宁静1 天前
AI 多模态全栈项目实战:Vue3 + Node 打造 TTS+ASR 全家桶!
vue.js·人工智能·node.js
Funny_AI_LAB1 天前
Zcode:智谱AI推出的轻量级 AI IDE 编程利器
人工智能·python·算法·编辑器
亚里随笔1 天前
偏离主路径:RLVR在参数空间中的非主方向学习机制
人工智能·深度学习·学习
共绩算力1 天前
Dolphin-v2:拍照论文也能实现精准解析
人工智能·共绩算力
沃达德软件1 天前
视频侦查技术揭秘
人工智能·opencv·计算机视觉·视觉检测·音视频·实时音视频·视频编解码
鲨莎分不晴1 天前
深度学习轻量化算子:从公式证明到数值计算
人工智能·深度学习
yzx9910131 天前
[特殊字符] AI画廊:基于CNN的实时艺术风格迁移系统
人工智能·神经网络·cnn
Blossom.1181 天前
GPTQ量化实战:从零手写大模型权重量化与反量化引擎
人工智能·python·算法·chatgpt·ai作画·自动化·transformer