Spark练习-统计不同性别的年龄总和,统计不同性别不同年龄的年龄平均值

目录

统计不同性别的年龄总和,最大值,最小值,平均值

计算不同性别不同年龄的年龄平均值


统计不同性别的年龄总和,最大值,最小值,平均值

python 复制代码
from pyspark import  SparkContext
sc = SparkContext()


# 1- 读取hdfs中的学生数据
rdd = sc.textFile('hdfs://node1:8020/data/student.txt')

# 2- 使用转化算子进行数据处理
# map中的lambda表达式,必须定义一个参数,用来接收rdd中的元素数据, 注意:x参数如何处理,要看x接收的数据类型
rdd2 = rdd.map(lambda x:x.split(','))

# 将转换后的kv进行分组,把分组的字段作为key值
rdd3 = rdd2.map(lambda x:(x[2],x))
# 使用groupbykey方法,按照key进行分组

rdd4 = rdd3.groupByKey()  # ('F', <pyspark.resultiterable.ResultIterable object at 0x7f7fea109760>)
# 需要使用mapvalue转化分组后的数据
rdd5 = rdd4.mapValues(lambda x:list(x))


## todo 统计不同性别的年龄总和 最大值 最小值 平均值
# 将需要计算的数据转为kv结构   分组的字段是key值  聚合数据是value值
rdd6 = rdd2.map(lambda x:(x[2],int(x[3])))

# 使用reduceBykey方式进行聚合计算  会将相同key值的数据先合并,然后在聚合计算
# 聚合计算的算子,lambda x,y 需要结构两个参数
# 计算总和
rdd7 = rdd6.reduceByKey(lambda x,y:x+y)  # 使用有局限性,无法进行平均数  最大值 最小值 数量  总数/数量

# 计算平均值
rdd8 = rdd6.groupByKey().mapValues(lambda x:sum(list(x)) / len(list(x)))

# 计算最大值
rdd9 = rdd6.groupByKey().mapValues(lambda x:max(list(x)))

# 计算最小值
rdd10 = rdd6.groupByKey().mapValues(lambda x:min(list(x)))


# 查看数据


res6 = rdd6.collect()
print(res6)

res7 = rdd7.collect()
print(res7)

res8 = rdd8.collect()
print(res8)

res9 = rdd9.collect()
print(res9)

res10 = rdd10.collect()
print(res10)

计算不同性别不同年龄的年龄平均值

python 复制代码
from pyspark import SparkContext
sc = SparkContext()

# 1-读取文件数据
rdd = sc.textFile('hdfs://node1:8020/data/students.txt')

# 2-切割每行数据
rdd_line = rdd.map(lambda x:x.split(','))



#  计算不同性别不同年级的年龄平均值
# 方式一  (x[2],x[4])
rdd_kv2 = rdd_line.map(lambda x : ((x[2],x[4]),int(x[3])))
rdd_res2 = rdd_kv2.groupByKey().mapValues(lambda x : sum(list(x)) / len(list(x)))


# 方式二  x[2]+x[4]
rdd_kv3 = rdd_line.map(lambda x : (x[2]+x[4],int(x[3])))
rdd_res3 = rdd_kv2.groupByKey().mapValues(lambda x : sum(list(x)) / len(list(x)))




# 3-查看数据

res3 = rdd_kv2.collect()
print(res3)
res4 = rdd_res2.collect()
print(res4)

res6 = rdd_res3.collect()
print(res6)
res7 = rdd_res3.collect()
print(res7)

虽然两种map不同,但是结果相同

相关推荐
Java 第一深情10 分钟前
零基础入门Flink,掌握基本使用方法
大数据·flink·实时计算
MXsoft61817 分钟前
华为服务器(iBMC)硬件监控指标解读
大数据·运维·数据库
PersistJiao1 小时前
Spark 分布式计算中网络传输和序列化的关系(二)
大数据·网络·spark·序列化·分布式计算
九河云1 小时前
如何对AWS进行节省
大数据·云计算·aws
FreeIPCC2 小时前
谈一下开源生态对 AI人工智能大模型的促进作用
大数据·人工智能·机器人·开源
梦幻通灵2 小时前
ES分词环境实战
大数据·elasticsearch·搜索引擎
Elastic 中国社区官方博客2 小时前
Elasticsearch 中的热点以及如何使用 AutoOps 解决它们
大数据·运维·elasticsearch·搜索引擎·全文检索
天冬忘忧3 小时前
Kafka 工作流程解析:从 Broker 工作原理、节点的服役、退役、副本的生成到数据存储与读写优化
大数据·分布式·kafka
sevevty-seven3 小时前
幻读是什么?用什么隔离级别可以防止幻读
大数据·sql
Yz98765 小时前
hive复杂数据类型Array & Map & Struct & 炸裂函数explode
大数据·数据库·数据仓库·hive·hadoop·数据库开发·big data