yolov11 部署瑞芯微rk3588、RKNN部署工程难度小、模型推理速度快

yolov8还没玩溜,yolov11又来了,那么部署也又来了。

特别说明:如有侵权告知删除,谢谢。

完整代码:包括onnx转rknn和测试代码、rknn板端部署C++代码
【onnx转rknn和测试代码】
【rknn板端部署C++代码】

1 模型训练

yolov11训练官方开源的已经非常详细了,参考官方代码。

2 导出 yolov11 onnx

导出onnx修改以下几处。

第一处:修改导出onnx的检测头

python 复制代码
        # 导出 onnx 增加
        y = []
        for i in range(self.nl):
            t1 = self.cv2[i](x[i])
            t2 = self.cv3[i](x[i])
            y.append(t1)
            y.append(t2)
        return y

第二处:增加保存onnx代码

python 复制代码
        print("===========  onnx =========== ")
        import torch
        dummy_input = torch.randn(1, 3, 640, 640)
        input_names = ["data"]
        output_names = ["reg1", "cls1", "reg2", "cls2", "reg3", "cls3"]
        torch.onnx.export(self.model, dummy_input, "/root/zhangqian/ultralytics-main/yolov11n_80class_ZQ.onnx",
                          verbose=False, input_names=input_names, output_names=output_names, opset_version=11)
        print("======================== convert onnx Finished! .... ")

修改完以上两处,运行以下代码:

python 复制代码
from ultralytics import YOLO
model = YOLO(model='yolov11n.pt')  # load a pretrained model (recommended for training)
results = model(task='detect', source='./test.jpg', save=True)  # predict on an image

特别说明: 修改完以上两处后运行会报错,但不影响onnx的生成;生成onnx后强烈建议用from onnxsim import simplify 处理一下再转rknn。

3 测试onnx效果

pytorch效果

onnx效果(测试onnx代码链接

4 onnx转rknn

onnx转rknn代码链接

转rknn后仿真结果

5 rk3588板子测试yolov11模型

使用的 rknn_toolkit 版本:rknn_toolkit2-2.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl

C++代码中的库和工具链的版本注意对应适配。

1)编译

cd examples/rknn_yolov11_demo_dfl_open

bash build-linux_RK3588.sh

2)运行

cd install/rknn_yolo_demo_Linux

./rknn_yolo_demo 

注意:修改模型、测试图像、保存图像的路径,修改文件为src下的main.cc

int main(int argc, char **argv)
{
    char model_path[256] = "/home/zhangqian/rknn/examples/rknn_yolov11_demo_dfl_open/model/RK3588/yolov11n_80class_ZQ.rknn";
    char image_path[256] = "/home/zhangqian/rknn/examples/rknn_yolov11_demo_dfl_open/test.jpg";
    char save_image_path[256] = "/home/zhangqian/rknn/examples/rknn_yolov11_demo_dfl_open/test_result.jpg";

    detect(model_path, image_path, save_image_path);
    return 0;
}

3)板端效果和时耗

相关推荐
红色的山茶花15 小时前
YOLOv7-0.1部分代码阅读笔记-general.py
笔记·yolo
源代码•宸16 小时前
完美解决 no model scale passed. assuming scale=‘n‘ 的YOLO问题
经验分享·yolo
lanboAI18 小时前
基于yolov5的番茄成熟度检测系统,支持图像、视频和摄像实时检测【pytorch框架、python源码】
python·yolo·智能手机
goomind19 小时前
YOLOv11实战宠物狗分类
人工智能·yolo·机器学习·计算机视觉·分类·聚类
aabbcccddd0121 小时前
yolov8目标检测如何设置背景/无标签图像参与训练
人工智能·yolo·目标检测·ultralytics
啊文师兄1 天前
使用 Pytorch 搭建视频车流量检测资源(基于YOLO)
人工智能·pytorch·yolo
牙牙要健康2 天前
【目标检测】【Ultralytics-YOLO系列】Windows11下YOLOV5人脸目标检测
人工智能·yolo·目标检测
Python图像识别-12 天前
基于yolov8、yolov5的番茄成熟度检测识别系统(含UI界面、训练好的模型、Python代码、数据集)
python·yolo·ui
双木的木2 天前
集智书童 | YOLOv8架构的改进:POLO 模型在多类目标检测中的突破 !
人工智能·python·深度学习·yolo·目标检测·机器学习·计算机视觉
985小水博一枚呀2 天前
【深度学习目标检测|YOLO算法4-4】YOLO家族进化史:从YOLOv1到YOLOv11的架构创新、性能优化与行业应用全解析——工业领域
网络·人工智能·深度学习·算法·yolo·目标检测·架构