Hive数仓操作(十二)

一、Hive 中的行列转换

1. 行转列: collect_list()

collect_list() 函数用于将一个列中的数据收集成一个数组。

示例数据文件

假设有一个名为 orders.txt 的文件,内容如下:

复制代码
1,101
1,101
1,103
2,104
2,105
导入数据到 Hive 表

首先,我们创建一个表 orders 并将数据导入到该表中:

sql 复制代码
-- 创建表
CREATE TABLE orders (
    user_id INT,
    order_id INT
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ',';

-- 加载数据
LOAD DATA LOCAL INPATH '/path/to/orders.txt' INTO TABLE orders;

然后,我们可以使用 collect_list() 函数收集每个用户的订单 ID:

sql 复制代码
SELECT
    user_id,
    collect_list(order_id) as order_ids
FROM
    orders
GROUP BY
    user_id;
示例结果
user_id order_ids
1 [101, 101, 103]
2 [104, 105]

2. 行转列:collect_set()

collect_set() 函数类似于 collect_list(),但它会移除数组中的重复值。

示例数据文件

使用同一个 orders.txt 文件。

导入数据到 Hive 表

数据已经导入过,因此我们直接使用 collect_set() 函数:

sql 复制代码
SELECT
    user_id,
    collect_set(order_id) as unique_order_ids
FROM
    orders
GROUP BY
    user_id;
示例结果
user_id unique_order_ids
1 [101, 103]
2 [104, 105]

3. 列转行:explode()

explode() 函数用于将数组里的元素拆分开来,并用行展示。通常与 lateral view 函数搭配使用。

示例数据文件

假设有一个名为 user_interests.txt 的文件,内容如下:

复制代码
1,sports,music,art
2,reading,travel
导入数据到 Hive 表

使用 explode() 函数炸裂拆分:

sql 复制代码
SELECT
    user_id,
    interest
FROM
    user_interests
LATERAL VIEW
    explode(split(interests, ',')) exploded_table AS interest;
-- 加载数据
LOAD DATA LOCAL INPATH '/path/to/user_interests.txt' INTO TABLE user_interests;
示例结果
user_id interest
1 sports
1 music
1 art
2 reading
2 travel

二、Hive 收集切割

1. split()

split() 函数用于将一个字符串按照指定的分隔符切割成一个数组。

示例数据文件

user_interests.txt 的文件,内容如下:

复制代码
1,sports,music,art
2,reading,travel
导入数据到 Hive 表

user_interests 已创建,然后,使用 split() 将兴趣字符串分割成数组:

sql 复制代码
SELECT
    user_id,
    split(interests, ',') as interest_array
FROM
    user_interests;
示例结果
user_id interest_array
1 ["sports", "music", "art"]
2 ["reading", "travel"]

2. split()常和concat_ws() 一起使用

concat_ws() 是一个字符串函数,用于将多列的值合并成一个字符串,使用指定的分隔符。split() 函数则用于将字符串按照指定的分隔符切割成一个数组。

示例数据文件

假设有一个名为 user_info.txt 的文件,内容如下:

复制代码
1,John,Doe,john.doe@example.com
2,Jane,Smith,jane.smith@example.com
导入数据到 Hive 表

首先,我们创建一个表 user_info 并将数据导入到该表中:

sql 复制代码
-- 创建表
CREATE TABLE user_info (
    user_id INT,
    first_name STRING,
    last_name STRING,
    email STRING
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ',';

-- 加载数据
LOAD DATA LOCAL INPATH '/path/to/user_info.txt' INTO TABLE user_info;

然后,使用 concat_ws() 将多列的值合并成一个字符串,并使用 split() 将这个字符串拆分成数组:

sql 复制代码
SELECT
    user_id,
    split(concat_ws(',', first_name, last_name, email), ',') as info_array
FROM
    user_info;
示例结果
user_id info_array
1 ["John", "Doe", "john.doe@example.com"]
2 ["Jane", "Smith", "jane.smith@example.com"]

更多细节可参考我的sql题专栏中的炸裂函数与恢复

经典sql题(十三)炸裂对应学生的姓名和成绩
经典sql题(十四)炸裂函数的恢复

相关推荐
张璐月2 小时前
mysql join语句、全表扫描 执行优化与访问冷数据对内存命中率的影响
数据库·mysql
小牛头#4 小时前
clickhouse 各个引擎适用的场景
大数据·clickhouse·机器学习
全干engineer4 小时前
ClickHouse 入门详解:它到底是什么、优缺点、和主流数据库对比、适合哪些场景?
数据库·clickhouse
Hellyc6 小时前
基于模板设计模式开发优惠券推送功能以及对过期优惠卷进行定时清理
java·数据库·设计模式·rocketmq
lifallen6 小时前
Paimon LSM Tree Compaction 策略
java·大数据·数据结构·数据库·算法·lsm-tree
元宇宙时间6 小时前
全球发展币GDEV:从中国出发,走向全球的数字发展合作蓝图
大数据·人工智能·去中心化·区块链
张先shen8 小时前
Elasticsearch RESTful API入门:基础搜索与查询DSL
大数据·spring boot·elasticsearch·搜索引擎·全文检索·restful
{⌐■_■}10 小时前
【Kafka】登录日志处理的三次阶梯式优化实践:从同步写入到Kafka多分区批处理
数据库·分布式·mysql·kafka·go
isNotNullX10 小时前
数据中台架构解析:湖仓一体的实战设计
java·大数据·数据库·架构·spark