LangChain中使用Prompt01

1.引入提示模板

python 复制代码
from langchain.prompts import (
    SystemMessagePromptTemplate,
    AIMessagePromptTemplate,
    HumanMessagePromptTemplate,
)

2.设置系统提示

python 复制代码
system_template_text="你是一位专业的翻译,能够将{input_language}翻译成{output_language},并且输出文本会根据用户要求的任何语言风格进行调整。请只输出翻译后的文本,不要有任何其它内容。"
system_prompt_template = SystemMessagePromptTemplate.from_template(system_template_text)

3.输出系统提示

python 复制代码
system_prompt_template

SystemMessagePromptTemplate(prompt=PromptTemplate(input_variables=['input_language', 'output_language'], template='你是一位专业的翻译,能够将{input_language}翻译成{output_language},并且输出文本会根据用户要求的任何语言风格进行调整。请只输出翻译后的文本,不要有任何其它内容。'))

4.输出系统提示参数值

python 复制代码
system_prompt_template.input_variables

输出:['input_language', 'output_language']

5.设置用户提示

python 复制代码
human_template_text="文本:{text}\n语言风格:{style}"
human_prompt_template = HumanMessagePromptTemplate.from_template(human_template_text)

6.输出用户提示

python 复制代码
human_prompt_template.input_variables

输出:['style', 'text']

7.为系统提示输入值并输出

python 复制代码
system_prompt = system_prompt_template.format(input_language="英语", output_language="汉语")
system_prompt

输出:SystemMessage(content='你是一位专业的翻译,能够将英语翻译成汉语,并且输出文本会根据用户要求的任何语言风格进行调整。请只输出翻译后的文本,不要有任何其它内容。')

8.为用户提示设置值并输出

python 复制代码
human_prompt = human_prompt_template.format(text="I'm so hungry I could eat a horse", style="文言文")
human_prompt

输出:HumanMessage(content="文本:I'm so hungry I could eat a horse\n语言风格:文言文")

9.将提示输入模型

from langchain_openai import ChatOpenAI

model = ChatOpenAI(model="gpt-3.5-turbo",base_url="https://api.chatanywhere.tech/v1")

response = model.invoke([

system_prompt,

human_prompt

])

10.输出结果

python 复制代码
print(response.content)

输出:吾今飢甚,可食馬矣。

11.多个示例输入

python 复制代码
input_variables = [
    {
        "input_language": "英语",
        "output_language": "汉语",
        "text": "I'm so hungry I could eat a horse",
        "style": "文言文"
    },
    {
        "input_language": "法语",
        "output_language": "英语",
        "text": "Je suis désolé pour ce que tu as fait",
        "style": "古英语"
    },
    {
        "input_language": "俄语",
        "output_language": "意大利语",
        "text": "Сегодня отличная погода",
        "style": "网络用语"
    },
    {
        "input_language": "韩语",
        "output_language": "日语",
        "text": "너 정말 짜증나",
        "style": "口语"
    }
]

12.输出

python 复制代码
for input in input_variables:
    response = model.invoke([
        system_prompt_template.format(input_language=input["input_language"], output_language=input["output_language"]), 
        human_prompt_template.format(text=input["text"], style=input["style"])])
    print(response.content)

输出:

吾今飢甚,可食馬也。

I am sorry for what thou hast done

Oggi il tempo è fantastico.

お前、マジでイライラするな。

相关推荐
SomeB1oody1 天前
获取OpenAI官方给ChatGPT的系统定义Prompt
人工智能·语言模型·chatgpt·prompt
旷野..2 天前
GPT 时代,精进编程思维 + 熟练 Prompt 是否是新的编程范式?
python·gpt·prompt
爱学习的小道长2 天前
Python langchain ReAct 使用范例
python·ai·langchain
AIzealot无2 天前
论文解读之Chain-of-Thought Prompting Elicits Reasoning in Large Language Models(CoT)
人工智能·语言模型·自然语言处理·prompt·提示词
Elastic 中国社区官方博客2 天前
带有 Elasticsearch 和 Langchain 的 Agentic RAG
大数据·人工智能·elasticsearch·搜索引擎·ai·langchain
confiself2 天前
大模型系列——投机解码:Prompt Lookup Decoding代码解读
prompt
杨过过儿2 天前
【Prompt Engineering】7 聊天机器人
人工智能·机器人·prompt
学习前端的小z2 天前
【AIGC】ChatGPT 结构化 Prompt 的高级应用
chatgpt·prompt·aigc
学习前端的小z3 天前
【AIGC】从CoT到BoT:AGI推理能力提升24%的技术变革如何驱动ChatGPT未来发展
chatgpt·prompt·aigc