LangChain中使用Prompt01

1.引入提示模板

python 复制代码
from langchain.prompts import (
    SystemMessagePromptTemplate,
    AIMessagePromptTemplate,
    HumanMessagePromptTemplate,
)

2.设置系统提示

python 复制代码
system_template_text="你是一位专业的翻译,能够将{input_language}翻译成{output_language},并且输出文本会根据用户要求的任何语言风格进行调整。请只输出翻译后的文本,不要有任何其它内容。"
system_prompt_template = SystemMessagePromptTemplate.from_template(system_template_text)

3.输出系统提示

python 复制代码
system_prompt_template

SystemMessagePromptTemplate(prompt=PromptTemplate(input_variables=['input_language', 'output_language'], template='你是一位专业的翻译,能够将{input_language}翻译成{output_language},并且输出文本会根据用户要求的任何语言风格进行调整。请只输出翻译后的文本,不要有任何其它内容。'))

4.输出系统提示参数值

python 复制代码
system_prompt_template.input_variables

输出:['input_language', 'output_language']

5.设置用户提示

python 复制代码
human_template_text="文本:{text}\n语言风格:{style}"
human_prompt_template = HumanMessagePromptTemplate.from_template(human_template_text)

6.输出用户提示

python 复制代码
human_prompt_template.input_variables

输出:['style', 'text']

7.为系统提示输入值并输出

python 复制代码
system_prompt = system_prompt_template.format(input_language="英语", output_language="汉语")
system_prompt

输出:SystemMessage(content='你是一位专业的翻译,能够将英语翻译成汉语,并且输出文本会根据用户要求的任何语言风格进行调整。请只输出翻译后的文本,不要有任何其它内容。')

8.为用户提示设置值并输出

python 复制代码
human_prompt = human_prompt_template.format(text="I'm so hungry I could eat a horse", style="文言文")
human_prompt

输出:HumanMessage(content="文本:I'm so hungry I could eat a horse\n语言风格:文言文")

9.将提示输入模型

from langchain_openai import ChatOpenAI

model = ChatOpenAI(model="gpt-3.5-turbo",base_url="https://api.chatanywhere.tech/v1")

response = model.invoke([

system_prompt,

human_prompt

])

10.输出结果

python 复制代码
print(response.content)

输出:吾今飢甚,可食馬矣。

11.多个示例输入

python 复制代码
input_variables = [
    {
        "input_language": "英语",
        "output_language": "汉语",
        "text": "I'm so hungry I could eat a horse",
        "style": "文言文"
    },
    {
        "input_language": "法语",
        "output_language": "英语",
        "text": "Je suis désolé pour ce que tu as fait",
        "style": "古英语"
    },
    {
        "input_language": "俄语",
        "output_language": "意大利语",
        "text": "Сегодня отличная погода",
        "style": "网络用语"
    },
    {
        "input_language": "韩语",
        "output_language": "日语",
        "text": "너 정말 짜증나",
        "style": "口语"
    }
]

12.输出

python 复制代码
for input in input_variables:
    response = model.invoke([
        system_prompt_template.format(input_language=input["input_language"], output_language=input["output_language"]), 
        human_prompt_template.format(text=input["text"], style=input["style"])])
    print(response.content)

输出:

吾今飢甚,可食馬也。

I am sorry for what thou hast done

Oggi il tempo è fantastico.

お前、マジでイライラするな。

相关推荐
W_Meng_H12 小时前
LangChain Agent - 火山引擎大模型推理与回答的完整流式输出
langchain·火山引擎
liliangcsdn14 小时前
prompt自主生成框架 - DSPy
prompt
多则惑少则明14 小时前
AI测试、大模型测试(六)AI agent简介与Prompt提示词
人工智能·prompt·ai测试·ai大模型测试
liliangcsdn17 小时前
如何用DSPy生成prompt示例
prompt
桃子叔叔18 小时前
AutoPrompt如何实现自动化生成与优化的方案
prompt·autoprompt
Jack___Xue19 小时前
LangChain实战快速入门笔记(三)--LangChain使用之Chains
人工智能·笔记·langchain
Elwin Wong19 小时前
将你的LangChian Agent可视化
人工智能·langchain·agent
工藤学编程19 小时前
零基础学AI大模型之LangChain核心:Runnable接口底层实现
人工智能·langchain
聊询QQ:688238861 天前
Matlab 实现遗传算法优化冷链物流配送路径规划
prompt
Jack___Xue1 天前
LangChain实战快速入门笔记(二)--LangChain使用之Model I/O
笔记·langchain