JobManager 和 TaskManager

在 Apache Flink 中,JobManagerTaskManager 是两个关键组件,它们各自负责不同的职责。这两个组件的名称中都包含了"Manager",是因为它们都在管理某些资源或任务。下面详细解释这两个组件的作用:

1、JobManager

作用

  • 协调和调度 :JobManager 负责协调和调度整个 Flink 集群中的任务。它是 Flink 集群的中央协调者。
  • 接收作业 :JobManager 接收用户提交的 Flink 作业,并将其分解成多个子任务(tasks)。
  • 任务分配JobManager 将这些子任务分配给 TaskManager 执行
  • 状态管理和故障恢复:JobManager 负责管理作业的状态,并在出现故障时进行恢复。
  • Web UI:JobManager 还负责提供 Web UI,以便用户可以监控和管理集群。

Manager 的含义

  • 管理作业:JobManager 管理整个作业的生命周期,包括接收、调度、状态管理和故障恢复。
  • 协调资源:JobManager 协调集群中的资源,确保任务被正确分配和执行。

2、TaskManager

作用

  • 执行任务 :TaskManager 负责实际执行从 JobManager 分配的任务。
  • 资源管理:每个 TaskManager 有多个任务槽(Task Slots),每个槽可以运行一个任务。
  • 数据交换:TaskManager 之间通过网络进行数据交换,以支持流处理和批处理任务。
  • 状态报告:TaskManager 定期向 JobManager 报告其状态和进度。

Manager 的含义

  • 管理任务:TaskManager 管理分配给它的任务,确保任务被正确执行。
  • 资源分配:TaskManager 管理其上的任务槽,确保资源的有效利用。

3、关系

  • 协调与执行:JobManager 和 TaskManager 之间是协调与执行的关系。JobManager 负责全局的协调和调度,而 TaskManager 负责具体的任务执行。
  • 通信:JobManager 和 TaskManager 之间通过网络进行通信,确保任务的正确分配和执行。
  • 故障恢复:当某个 TaskManager 出现故障时,JobManager 会重新调度任务,确保作业的连续性和可靠性。

4、总结

  • JobManager:负责作业的接收、调度、状态管理和故障恢复。
  • TaskManager:负责任务的实际执行和资源管理。

这两个组件共同协作,确保 Flink 集群能够高效、可靠地处理大规模数据流和批处理任务。

相关推荐
千叶真尹2 天前
基于Flink的用户画像 OLAP 实时数仓统计分析
flink
从头再来的码农3 天前
大数据Flink相关面试题(一)
大数据·flink
MarkHD4 天前
第四天 从CAN总线到Spark/Flink实时处理
大数据·flink·spark
SparkSql4 天前
FlinkCDC采集MySQL8.4报错
大数据·flink
james的分享4 天前
Flink之Table API
flink·table api
涤生大数据5 天前
带你玩转 Flink TumblingWindow:从理论到代码的深度探索
flink·理论·代码·tumblingwindow
Apache Flink5 天前
网易游戏 Flink 云原生实践
游戏·云原生·flink
SunTecTec6 天前
SQL Server To Paimon Demo by Flink standalone cluster mode
java·大数据·flink
工作中的程序员7 天前
flink监控指标
flink
小马爱打代码7 天前
SpringBoot整合Kafka、Flink实现流式处理
spring boot·flink·kafka