JobManager 和 TaskManager

在 Apache Flink 中,JobManagerTaskManager 是两个关键组件,它们各自负责不同的职责。这两个组件的名称中都包含了"Manager",是因为它们都在管理某些资源或任务。下面详细解释这两个组件的作用:

1、JobManager

作用

  • 协调和调度 :JobManager 负责协调和调度整个 Flink 集群中的任务。它是 Flink 集群的中央协调者。
  • 接收作业 :JobManager 接收用户提交的 Flink 作业,并将其分解成多个子任务(tasks)。
  • 任务分配JobManager 将这些子任务分配给 TaskManager 执行
  • 状态管理和故障恢复:JobManager 负责管理作业的状态,并在出现故障时进行恢复。
  • Web UI:JobManager 还负责提供 Web UI,以便用户可以监控和管理集群。

Manager 的含义

  • 管理作业:JobManager 管理整个作业的生命周期,包括接收、调度、状态管理和故障恢复。
  • 协调资源:JobManager 协调集群中的资源,确保任务被正确分配和执行。

2、TaskManager

作用

  • 执行任务 :TaskManager 负责实际执行从 JobManager 分配的任务。
  • 资源管理:每个 TaskManager 有多个任务槽(Task Slots),每个槽可以运行一个任务。
  • 数据交换:TaskManager 之间通过网络进行数据交换,以支持流处理和批处理任务。
  • 状态报告:TaskManager 定期向 JobManager 报告其状态和进度。

Manager 的含义

  • 管理任务:TaskManager 管理分配给它的任务,确保任务被正确执行。
  • 资源分配:TaskManager 管理其上的任务槽,确保资源的有效利用。

3、关系

  • 协调与执行:JobManager 和 TaskManager 之间是协调与执行的关系。JobManager 负责全局的协调和调度,而 TaskManager 负责具体的任务执行。
  • 通信:JobManager 和 TaskManager 之间通过网络进行通信,确保任务的正确分配和执行。
  • 故障恢复:当某个 TaskManager 出现故障时,JobManager 会重新调度任务,确保作业的连续性和可靠性。

4、总结

  • JobManager:负责作业的接收、调度、状态管理和故障恢复。
  • TaskManager:负责任务的实际执行和资源管理。

这两个组件共同协作,确保 Flink 集群能够高效、可靠地处理大规模数据流和批处理任务。

相关推荐
工作中的程序员1 小时前
flink Shuffle的总结
大数据·flink
張萠飛8 小时前
flink cdc的source数据流如何配置事件时间,如何设置时间语义,分配时间戳并生成水位线
大数据·flink
IT界刘德华20 小时前
Apache Flink 实战:实时流处理的最佳实践与生产级实现
大数据·flink·apache
搞程序的心海2 天前
用Scala玩转Flink:从零构建实时处理系统
开发语言·flink·scala
黄雪超2 天前
Flink介绍——实时计算核心论文之S4论文总结
大数据·论文阅读·flink
Oo_Amy_oO3 天前
Airflow+Spark/Flink vs. Kettle
大数据·flink·spark
gegeyanxin3 天前
flink异步读写外部数据源
大数据·flink·异步io·访问外部数据
宝哥大数据5 天前
Flink内存模型--flink1.19.1
大数据·flink
路由侠内网穿透6 天前
本地部署开源流处理框架 Apache Flink 并实现外部访问
大数据·网络协议·tcp/ip·flink·服务发现·apache·consul
宝哥大数据6 天前
Flinksql--订单宽表
大数据·flink