微服务
问:用控制器来完成集群的工作负载,那么应用如何暴漏出去?
答:需要通过微服务暴漏出去后才能被访问
- Service 是一组提供相同服务的Pod对外开放的接口
- 借助Service,应用可以实现服务发现和负载均衡
- Service 默认只支持4层负载均衡能力,没有7层功能,需要借助 Ingress 实现
微服务类型
微服务类型 | 作用描述 |
---|---|
ClusterIP | 默认值,k8s系统给service自动分配的虚拟IP,只能在集群内部访问 |
NodePort | 将Service通过指定的Node上的端口暴露给外部,访问任意一个NodeIP:nodePort都将路由到ClusterIP |
LoadBalancer | 在NodePort的基础上,借助cloud provider创建一个外部的负载均衡器,并将请求转发到 NodeIP:NodePort,此模式只能在云服务器上使用 |
ExternalName | 将服务通过 DNS CNAME 记录方式转发到指定的域名(通过 spec.externlName 设定 |
用例
bash
[root@k8s-master ~]# kubectl create deployment mini--image myapp:v1 --replicas 2
# 生成控制器文件并建立控制器
[root@k8s-master ~]# kubectl create deployment mini--image myapp:v1 --replicas 2 --dry-run=client -o yaml > mini.yaml
# 生成微服务Yaml追加到已有Yaml中
[root@k8s-master ~]# kubectl expose deployment mini--port 80 --target-port 80 --dry-run=client -o yaml >> mini.yaml
[root@k8s-master ~]# kubectl delete deployments.apps mini
[root@k8s-master ~]# vim mini.yaml
[root@k8s-master ~]# kubectl apply -f mini.yaml
[root@k8s-master ~]# kubectl get service
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 9d
mini ClusterIP 10.104.255.78 <none> 80/TCP 42s
微服务默认使用 iptables 调度
bash
# 可以在火墙中查看到策略信息(一般在底下)
[root@k8s-master ~]# iptables -t nat -nL
...
KUBE-MARK-MASQ 6 -- !10.244.0.0/16 10.104.255.78 /* default/mini cluster IP */ tcp dpt:80
...
IPVS 模式
- Service 是由 kube-proxy 组件,加上 iptables 来共同实现的
- kube-proxy 通过 iptables 处理 Service 的过程,需要在宿主机上设置相当多的 iptables 规则,如果宿主机有大量的Pod,不断刷新iptables规则,会消耗大量的CPU资源
- IPVS模式的service,可以使K8s集群支持更多量级的Pod
IPVS 配置
bash
# 所有节点安装 ipvsadm
dnf install ipvsadm -y
# 修改Master节点的代理配置
[root@k8s-master ~]# kubectl -n kube-system edit cm kube-proxy
metricsBindAddress: ""
mode: "ipvs"
# 设置kube-system使用IPVS模式
nftables:
# 当改变配置文件后,已运行的Pod状态不会改变,需要重启Pod
[root@k8s-master ~]# kubectl -n kube-system get pods | awk '/kube-proxy/{system("kubectl -n kube-system delete pods "$1)}'
[root@k8s-master ~]# kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE
mini-d5496d8f4-75khx 1/1 Running 0 15m 10.244.2.47 k8s-node2.org
mini-d5496d8f4-792mb 1/1 Running 0 15m 10.244.1.70 k8s-node1.org
[root@k8s-master ~]# ipvsadm -Ln
...
TCP 10.104.255.78:80 rr
-> 10.244.1.70:80 Masq 1 0 0
-> 10.244.2.47:80 Masq 1 0 0
...
切换 IPVS 模式后,kube-proxy会在宿主机上添加一个虚拟网卡:kube-ipvs0,并分配所有service IP
bash
[root@k8s-master ~]# ip a | tail
...
inet 10.96.0.10/32 scope global kube-ipvs0
valid_lft forever preferred_lft forever
深入微服务类型
ClusterIP
ClusterIP 模式只能在集群内访问,并对集群内的Pod提供健康检测和自动发现功能
ClusterIP 用例
bash
[root@k8s-master ~]# vim mini.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
labels:
app: mini
name: mini
spec:
replicas: 2
selector:
matchLabels:
app: mini
template:
metadata:
creationTimestamp: null
labels:
app: mini
spec:
containers:
- image: myapp:v1
name: myapp
---
apiVersion: v1
kind: Service
metadata:
labels:
app: mini
name: mini
spec:
ports:
- port: 80
protocol: TCP
targetPort: 80
selector:
app: mini
type: ClusterIP
# service 创建后 集群DNS 提供解析
[root@k8s-master ~]# dnf install bind-utils -y
[root@k8s-master ~]# dig mini.default.svc.cluster.local @10.96.0.10
...
;; ANSWER SECTION:
mini.default.svc.cluster.local. 30 IN A 10.104.255.78
;; Query time: 3 msec
;; SERVER: 10.96.0.10#53(10.96.0.10)
;; WHEN: Wed Oct 09 21:07:57 CST 2024
;; MSG SIZE rcvd: 117
ClusterIP的另一种模式:HeadLess
HeadLess(无头服务)
对于无头 Services 并不会分配 Cluster IP,kube-proxy 不会处理它们, 而且平台也不会为它们进行负载均衡和路由,集群访问通过 DNS 解析直接指向到业务 Pod 上的 IP,所有的调度由 DNS 单独完成
HeadLess 用例
bash
[root@k8s-master ~]# vim mini.yaml
...
selector:
app: mini
type: ClusterIP
clusterIP: None
[root@k8s-master ~]# kubectl delete -f mini.yaml
[root@k8s-master ~]# kubectl apply -f mini.yaml
# 测试
[root@k8s-master ~]# kubectl get service mini
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
mini ClusterIP None <none> 80/TCP 18s
[root@k8s-master ~]# dig mini.default.svc.cluster.local @10.96.0.10
# mini.default.svc.cluster.local. 集群DNS
...
;; ANSWER SECTION:
mini.default.svc.cluster.local. 30 IN A 10.244.2.48
# 解析到Pod上
mini.default.svc.cluster.local. 30 IN A 10.244.1.71
...
kubectl get services mini
[root@k8s-master ~]# kubectl run ovo --image busyboxplus -it
/ # nslookup mini
/ # nslookup mini.default.svc.cluster.local.
Server: 10.96.0.10
Address 1: 10.96.0.10 kube-dns.kube-system.svc.cluster.local
Name: mini.default.svc.cluster.local.
Address 1: 10.244.1.71 10-244-1-71.mini.default.svc.cluster.local
Address 2: 10.244.2.48 10-244-2-48.mini.default.svc.cluster.local
/ # curl mini
Hello MyApp | Version: v1 | <a href="hostname.html">Pod Name</a>
/ # curl mini/hostname.html
mini-d5496d8f4-228g5
[root@k8s-master ~]# kubectl describe service mini
...
Endpoints: 10.244.1.71:80,10.244.2.48:80
...
NodePort
通过 IPVS 暴漏端口,从而使外部主机通过 Mater 节点的对外 IP:Port 来访问 Pod 业务
访问过程:NodePort ------> ClusterIP ------> Pods
NodePort 用例
bash
[root@k8s-master ~]# vim mini.yaml
...
selector:
app: mini
type: NodePort
[root@k8s-master ~]# kubectl delete -f mini.yaml
[root@k8s-master ~]# kubectl apply -f mini.yaml
[root@k8s-master ~]# kubectl get services mini
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
mini NodePort 10.96.170.18 <none> 80:30835/TCP 3m22s
# nodeport在集群节点上绑定端口,一个端口对应一个服务
[root@k8s-master ~]# kubectl describe service mini
...
NodePort: <unset> 30835/TCP
...
[root@k8s-master ~]# for i in {1..5}
> do
> curl 172.25.254.200:30835/hostname.html
> done
mini-d5496d8f4-cts8s
mini-d5496d8f4-9v24v
mini-d5496d8f4-cts8s
mini-d5496d8f4-9v24v
mini-d5496d8f4-cts8s
NodePort 默认端口是 30000---32767,超出会报错
如果需要使用范围外的端口,就需要特殊设定
bash
vim /etc/kubernetes/manifests/kube-apiserver.yaml
# 需要增加到- command:
- --service-node-port-range=30000-40000
添加 --service-node-port-range= 参数,端口范围可以自定义
修改后 api-server 会自动重启,等 apiserver 正常启动后才能操作集群
集群重启自动完成在修改完参数后,全程不需要人为干预
LoadBalancer
云平台会为我们分配vip并实现访问,如果是裸金属主机那么需要metallb来实现ip的分配
过程:LoadBalancer ------> NodePort ------> ClusterIP ------> Pods
LoadBalancer 用例
bash
[root@k8s-master ~]# vim mini.yaml
...
selector:
app: mini
type: LoadBalancer
[root@k8s-master ~]# kubectl delete -f mini.yaml
[root@k8s-master ~]# kubectl apply -f mini.yaml
# 默认无法分配外部访问IP
[root@k8s-master ~]# kubectl get svc mini
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
mini LoadBalancer 10.102.105.5 <pending> 80:31759/TCP 18s
LoadBalancer 模式适用云平台,裸金属环境需要安装 MetalLB提供支持
MetalLB
MetalLB功能:为 LoadBalancer 分配 VIP
MetalLB 配置
bash
# 设置 IPVS 模式
[root@k8s-master ~]# kubectl edit cm -n kube-system kube-proxy
...
metricsBindAddress: ""
mode: "ipvs"
ipvs:
strictARP: true
...
[root@k8s-master ~]# kubectl -n kube-system get pods | awk '/kube-proxy/{system("kubectl -n kube-system delete pods "$1)}'
# 下载部署文件
[root@k8s-master ~]# dnf install wget -y
[root@k8s-master ~]# wget https://raw.githubusercontent.com/metallb/metallb/v0.13.12/config/manifests/metallb-native.yaml
# 修改文件镜像拉取地址(配置好Docker拉取镜像默认地址)
...
image: metallb/controller:v0.14.8
...
image: metallb/speaker:v0.14.8
...
# 上传镜像到harbor仓库
[root@k8s-master ~]# docker pull quay.io/metallb/controller:v0.14.8
[root@k8s-master ~]# docker pull quay.io/metallb/speaker:v0.14.8
[root@k8s-master ~]# docker tag quay.io/metallb/speaker:v0.14.8 ooovooo.org/metallb/speaker:v0.14.8
[root@k8s-master ~]# docker tag quay.io/metallb/controller:v0.14.8 ooovooo.org/metallb/controller:v0.14.8
[root@k8s-master ~]# docker push ooovooo.org/metallb/speaker:v0.14.8
[root@k8s-master ~]# docker push ooovooo.org/metallb/controller:v0.14.8
# 部署服务
[root@k8s-master ~]# kubectl apply -f metallb-native.yaml
[root@k8s-master ~]# kubectl -n metallb-system get pods
NAME READY STATUS RESTARTS AGE
controller-65957f77c8-c9lrv 1/1 Running 0 23s
speaker-5g4hz 1/1 Running 0 23s
speaker-bw4qh 1/1 Running 0 23s
speaker-t7d7f 1/1 Running 0 23s
# 配置分配地址段
[root@k8s-master ~]# vim configmap.yml
apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
name: name
# 地址池名称
namespace: metallb-system
spec:
addresses:
- 172.25.254.25-172.25.254.50
# 地址池段
---
# 不同的kind之间使用---分割
apiVersion: metallb.io/v1beta1
kind: L2Advertisement
metadata:
name: example
namespace: metallb-system
spec:
ipAddressPools:
- name
# 使用的地址池
[root@k8s-master ~]# kubectl apply -f configmap.yml
[root@k8s-master ~]# kubectl get services mini
# 自动分配IP
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
mini LoadBalancer 10.102.105.5 172.25.254.25 80:31759/TCP 62m
# 通过分配地址从集群外访问服务
[root@k8s-master ~]# curl 172.25.254.25
Hello MyApp | Version: v1 | <a href="hostname.html">Pod Name</a>
ExternalName
- 开启 services 后,不会被分配 IP,而是用 DNS 解析 CNAME 固定域名来解决 IP 变化问题
- 一般应用于外部业务和 Pod 沟通或外部业务迁移到 Pod 内时
- 在应用向集群迁移过程中,ExternalName在过度阶段就可以起作用了
- 集群外的资源迁移到集群时,在迁移的过程中 IP 可能会变化,但是 域名+DNS解析 能完美解决此问题
ExternalName 用例
bash
[root@k8s-master ~]# vim mini.yaml
...
selector:
app: mini
type: ExternalName
externalName: www.mini.org
[root@k8s-master ~]# kubectl delete -f mini.yaml
[root@k8s-master ~]# kubectl apply -f mini.yaml
[root@k8s-master ~]# kubectl get services mini
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
mini ExternalName <none> www.mini.org 80/TCP 5s
Ingress-Nginx
官网:https://kubernetes.github.io/ingress-nginx/deploy/#bare-metal-clusters
Ingress-Nginx 功能
- 一种全局的、为了代理不同后端 Service 而设置的负载均衡服务,支持7层
- Ingress由两部分组成:Ingress controller和Ingress服务
- Ingress Controller 会根据你定义的 Ingress 对象,提供对应的代理能力
部署 Ingress
bash
[root@k8s-master ~]# mkdir ingress
[root@k8s-master ~]# cd ingress/
# 下载部署文件
[root@k8s-master ingress]# wget https://raw.githubusercontent.com/kubernetes/ingress-nginx/controller-v1.11.2/deploy/static/provider/baremetal/deploy.yaml
# 还要下载ingress-nginx的镜像
# 上传镜像到harbor
[root@k8s-master ~]# docker tag reg.harbor.org/ingress-nginx/controller:v1.11.2 ooovooo.org/ingress-nginx/controller:v1.11.2
[root@k8s-master ~]# docker tag reg.harbor.org/ingress-nginx/kube-webhook-certgen:v1.4.3 ooovooo.org/ingress-nginx/kube-webhook-certgen:v1.4.3
[root@k8s-master ~]# docker push ooovooo.org/ingress-nginx/controller:v1.11.2
[root@k8s-master ~]# docker push ooovooo.org/ingress-nginx/kube-webhook-certgen:v1.4.3
# 安装Ingress
[root@k8s-master ~]# vim deploy.yaml
...
image: ingress-nginx/controller:v1.11.2
...
image: ingress-nginx/kube-webhook-certgen:v1.4.3
...
image: ingress-nginx/kube-webhook-certgen:v1.4.3
[root@k8s-master ingress]# kubectl apply -f deploy.yaml
[root@k8s-master ingress]# kubectl -n ingress-nginx get pods
# 一开始可能会有一个error,删掉再加载就好了
NAME READY STATUS RESTARTS AGE
ingress-nginx-admission-create-w6jz9 0/1 Completed 0 14s
ingress-nginx-admission-patch-bbsn6 0/1 Completed 1 14s
ingress-nginx-controller-bb7d8f97c-nx96n 1/1 Running 0 14s
# ingress-nginx-controller 1/1 Running 即运行成功
[root@k8s-master ~]# kubectl -n ingress-nginx get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
ingress-nginx-controller NodePort 10.100.33.214 <none> 80:32416/TCP,443:30320/TCP 30s
ingress-nginx-controller-admission ClusterIP 10.98.75.102 <none> 443/TCP 30s
# 修改微服务为loadbalancer
[root@k8s-master ~]# kubectl -n ingress-nginx edit svc ingress-nginx-controller
...
49 type: LoadBalancer
# 查看修改结果
[root@k8s-master ~]# kubectl -n ingress-nginx get services
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
# 需要配置有 MetalLB
ingress-nginx-controller LoadBalancer 10.100.33.214 172.25.254.25 80:32416/TCP,443:30320/TCP
ingress-nginx-controller-admission ClusterIP 10.98.75.102 <none> 443/TCP
在 kubectl -n ingress-nginx get services 中 的 EXTERNAL-IP
即 Ingress 最终对外的 IP
测试 Ingress
bash
[root@k8s-master ingress]# kubectl create deployment myappv1 --image myapp:v1 --dry-run=client -o yaml > myappv1.yml
[root@k8s-master ingress]# kubectl apply -f myappv1.yml
[root@k8s-master ingress]# kubectl expose deployment myappv1 --port 80 --target-port 80 --dry-run=client -o yaml >> myappv1.yml
[root@k8s-master ingress]# vim myappv1.yml
apiVersion: apps/v1
kind: Deployment
metadata:
labels:
app: myappv1
name: myappv1
spec:
replicas: 1
selector:
matchLabels:
app: myappv1
strategy: {}
template:
metadata:
labels:
app: myappv1
spec:
containers:
- image: myapp:v1
name: myapp
---
apiVersion: v1
kind: Service
metadata:
labels:
app: myappv1
name: myappv1
spec:
ports:
- port: 80
protocol: TCP
targetPort: 80
selector:
app: myappv1
kubectl apply -f myappv1.yml
kubectl create ingress webcluster --rule '*/=ooovooo-svc:80' --dry-run=client -o yaml > ingress.yml
[root@k8s-master ingress]# vim ingress.yml
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: myappv1
spec:
ingressClassName: nginx
rules:
- http:
paths:
- backend:
service:
name: myappv1
# 与自己的服务名保持一致
port:
number: 80
path: /
pathType: Prefix
# Exact(精确匹配)
# ImplementationSpecific(特定实现)
# Prefix(前缀匹配)
# Regular expression(正则表达式匹配)
# 建立Ingress控制器
kubectl apply -f ingress.yml
# 根据kubectl -n ingress-nginx get services中的IP进行访问
[root@k8s-master ingress]# curl 172.25.254.25
Hello MyApp | Version: v1 | <a href="hostname.html">Pod Name</a>
Ingress 必须和输出的 service 资源处于同一 namespace 中
Ingress 高级用法
基于路径的访问
bash
[root@k8s-master ingress]# vim ingress1.yml
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
annotations:
nginx.ingress.kubernetes.io/rewrite-target: /
name: ingress1
spec:
ingressClassName: nginx
rules:
- host: www.ooovooo.org
http:
paths:
- backend:
service:
name: myappv1
port:
number: 80
path: /v1
pathType: Prefix
- backend:
service:
name: myappv2
port:
number: 80
path: /v2
pathType: Prefix
[root@k8s-master ingress]# kubectl apply -f ingress1.yml
[root@k8s-master ingress]# echo 172.25.254.25 www.ooovooo.org >> /etc/hosts
[root@k8s-master ingress]# curl www.ooovooo.org/v1
Hello MyApp | Version: v1 | <a href="hostname.html">Pod Name</a>
[root@k8s-master ingress]# curl www.ooovooo.org/v2
Hello MyApp | Version: v2 | <a href="hostname.html">Pod Name</a>
[root@k8s-master ingress]# curl www.ooovooo.org/v2/haha
Hello MyApp | Version: v2 | <a href="hostname.html">Pod Name</a>
[root@k8s-master ingress]# curl www.ooovooo.org/v1/gaga
Hello MyApp | Version: v1 | <a href="hostname.html">Pod Name</a>
基于域名的访问
bash
[root@k8s-master ingress]# vim ingress2.yml
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
annotations:
nginx.ingress.kubernetes.io/rewrite-target: /
name: ingress2
spec:
ingressClassName: nginx
rules:
- host: myappv1.ooovooo.org
http:
paths:
- backend:
service:
name: myappv1
port:
number: 80
path: /
pathType: Prefix
- host: myappv2.ooovooo.org
http:
paths:
- backend:
service:
name: myappv2
port:
number: 80
path: /
pathType: Prefix
[root@k8s-master ingress]# kubectl apply -f ingress2.yml
[root@k8s-master ingress]# kubectl delete -f ingress1.yml
[root@k8s-master ingress]# kubectl describe ingress ingress2
...
Host Path Backends
---- ---- --------
myappv1.ooovooo.org
/ myappv1:80 (10.244.1.89:80)
myappv2.ooovooo.org
/ myappv2:80 (10.244.1.90:80)
[root@k8s-master ingress]# curl myappv1.ooovooo.org
Hello MyApp | Version: v1 | <a href="hostname.html">Pod Name</a>
[root@k8s-master ingress]# curl myappv2.ooovooo.org
Hello MyApp | Version: v2 | <a href="hostname.html">Pod Name</a>
建立 TLS 加密
bash
[root@k8s-master ingress]# openssl req -newkey rsa:2048 -nodes -keyout tls.key -x509 -days 365 -subj "/CN=nginxsvc/O=nginxsvc" -out tls.crt
[root@k8s-master ingress]# kubectl create secret tls web-tls-secret --key tls.key --cert tls.crt
[root@k8s-master ingress]# vim ingress3.yml
[root@k8s-master ingress]# echo 172.25.254.25 myapp-tls.ooovooo.org >> /etc/hosts
[root@k8s-master ingress]# kubectl apply -f ingress3.yml
[root@k8s-master ingress]# kubectl delete -f ingress2.yml
# 在Windows主机添加解析,并进行访问
建立 AUTH 认证
bash
[root@k8s-master ingress]# vim ingress4.yml
[root@k8s-master ingress]# kubectl delete -f ingress3.yml
[root@k8s-master ingress]# kubectl apply -f ingress4.yml
[root@k8s-master ingress]# kubectl describe ingress ingress4
...
TLS:
web-tls-secret terminates myapp-tls.ooovooo.org
...
myapp-tls.ooovooo.org
/ myappv1:80 (10.244.1.89:80)
...
[root@k8s-master ingress]# curl -k https://myapp-tls.ooovooo.org
<html>
<head><title>401 Authorization Required</title></head>
<body>
<center><h1>401 Authorization Required</h1></center>
<hr><center>nginx</center>
</body>
</html>
[root@k8s-master ingress]# curl -k https://myapp-tls.ooovooo.org -u ovo:aaa
Hello MyApp | Version: v1 | <a href="hostname.html">Pod Name</a>
# Windows主机访问同样需要登录
Rewrite 重定向
bash
# 将指定访问文件重定向到hostname.html上
[root@k8s-master ingress]# vim ingress5.yml
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
annotations:
nginx.ingress.kubernetes.io/app-root: /hostname.html
name: ingress5
spec:
ingressClassName: nginx
rules:
- host: myapp-tls.ooovooo.org
http:
paths:
- backend:
service:
name: myappv1
port:
number: 80
path: /
# 当访问/时,重定向到hostname.html
pathType: Prefix
[root@k8s-master ingress]# kubectl delete -f ingress4.yml
[root@k8s-master ingress]# kubectl apply -f ingress5.yml
[root@k8s-master ingress]# curl -Lk https://myapp-tls.ooovooo.org -u ovo:aaa
myappv1-586444467f-w4dxn
[root@k8s-master ingress]# curl -Lk https://myapp-tls.ooovooo.org/haha/hostname.html -u ovo:aaa
<html>
<head><title>404 Not Found</title></head>
<body bgcolor="white">
<center><h1>404 Not Found</h1></center>
<hr><center>nginx/1.12.2</center>
</body>
</html>
# 以上存在一个问题,当有多路径时需要重定向时,需要配置多个,费人力
# 正则解决指定路径问题
[root@k8s-master ingress]# vim ingress6.yml
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
annotations:
nginx.ingress.kubernetes.io/rewrite-target: /$2
nginx.ingress.kubernetes.io/use-regex: "true"
name: ingress6
spec:
ingressClassName: nginx
rules:
- host: myapp-tls.ooovooo.org
http:
paths:
- backend:
service:
name: myapp-v1
port:
number: 80
path: /
pathType: Prefix
- backend:
service:
name: myappv1
port:
number: 80
path: /haha(/|$)(.*)
pathType: ImplementationSpecific
[root@k8s-master ingress]# kubectl delete -f ingress5.yml
[root@k8s-master ingress]# kubectl apply -f ingress6.yml
[root@k8s-master ingress]# curl -Lk https://myapp-tls.ooovooo.org/haha/hostname.html -u ovo:aaa
myappv1-586444467f-w4dxn
Canary 金丝雀发布
金丝雀发布(Canary Release)也称为灰度发布,是一种软件发布策略
主要目的是在将新版本的软件全面推广到生产环境之前,先在一小部分用户或服务器上进行测试和验证,以降低因新版本引入重大问题而对整个系统造成的影响,是一种 Pod 的发布方式
金丝雀发布采取先添加、再删除的方式,保证Pod的总量不低于期望值。并且在更新部分Pod后,暂停更新,当确认新Pod版本运行正常后再进行其他版本的Pod的更新
发布方式
Header > Cookie > Weiht
其中 Header 和 Weiht 中的最多
基于Header (HTTP包头)灰度
- 通过Annotaion扩展
- 创建灰度 Ingress,配置灰度头部 key 以及 value
- 灰度流量验证完毕后,切换正式 Ingress 到新版本
- 之前我们在做升级时可以通过控制器做滚动更新,默认25%利用Header 可以使升级更为平滑,通过 key 和 value 测试新的业务体系是否有问题
bash
# 创建版本v1的ingress
[root@k8s-master ingress]# kubectl delete -f ingress6.yml
[root@k8s-master ingress]# vim ingress7.yml
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
annotations:
name: myapp-v1-ingress
spec:
ingressClassName: nginx
rules:
- host: myapp-tls.ooovooo.org
http:
paths:
- backend:
service:
name: myappv1
port:
number: 80
path: /
pathType: Prefix
[root@k8s-master ingress]# kubectl apply -f ingress7.yml
# 建立基于header的ingress
[root@k8s-master ingress]# vim ingress8.yml
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
annotations:
nginx.ingress.kubernetes.io/canary: "true"
nginx.ingress.kubernetes.io/canary-by-header: "version"
nginx.ingress.kubernetes.io/canary-by-header-value: "2"
name: myapp-v2-ingress
spec:
ingressClassName: nginx
rules:
- host: myapp-tls.ooovooo.org
http:
paths:
- backend:
service:
name: myappv2
port:
number: 80
path: /
pathType: Prefix
[root@k8s-master ingress]# kubectl apply -f ingress8.yml
# 进行测试
[root@k8s-master ingress]# curl myapp-tls.ooovooo.org
Hello MyApp | Version: v1 | <a href="hostname.html">Pod Name</a>
[root@k8s-master ingress]# curl -H "version: 2" myapp-tls.ooovooo.org
Hello MyApp | Version: v2 | <a href="hostname.html">Pod Name</a>
基于权重的灰度发布
- 通过 Annotaion 拓展
- 创建灰度 Ingress,配置灰度权重以及总权重
- 灰度流量验证完毕后,切换正式 Ingress 到新版本
bash
[root@k8s-master ingress]# vim ingress9.yml
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
annotations:
nginx.ingress.kubernetes.io/canary: "true"
nginx.ingress.kubernetes.io/canary-weight: "10"
# 灰度权重
nginx.ingress.kubernetes.io/canary-weight-total: "100"
# 总权重
name: myapp-v2-ingress
spec:
ingressClassName: nginx
rules:
- host: myapp-tls.ooovooo.org
http:
paths:
- backend:
service:
name: myappv2
port:
number: 80
path: /
pathType: Prefix
[root@k8s-master ingress]# kubectl delete -f ingress8.yml
[root@k8s-master ingress]# kubectl apply -f ingress9.yml
[root@k8s-master ingress]# vim check_ingress.sh
#!/bin/bash
v1=0
v2=0
for (( i=0; i<100; i++))
do
response=`curl -s myapp-tls.ooovooo.org |grep -c v1`
v1=`expr $v1 + $response`
v2=`expr $v2 + 1 - $response`
done
echo "v1:$v1, v2:$v2"
[root@k8s-master ingress]# chmod +x check_ingress.sh
[root@k8s-master ingress]# sh check_ingress.sh
v1:89, v2:11
# 根据不同灰度权重而不同