基于差分进化灰狼混合优化的SVM(DE-GWO-SVM)数据预测算法matlab仿真

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

[4.1 DE优化](#4.1 DE优化)

[4.2 GWO优化](#4.2 GWO优化)

5.完整程序


1.程序功能描述

基于差分进化灰狼混合优化的SVM(DE-GWO-SVM)数据预测算法matlab仿真,对比SVM和GWO-SVM。

2.测试软件版本以及运行结果展示

MATLAB2022A版本运行

3.核心程序

复制代码
.........................................................................
%导入数据
load data.mat
 
[yp1,yp2,err1,err2,loss]=func_newGWO([15,100,0.2,0.8,0.2],p_train,t_train,p_test,t_test);

figure
plot(loss);
title(['适应度曲线  ']);
xlabel('进化代数');
ylabel('适应度');
grid on

figure
plot(1:length(t_train),t_train,'r',1:length(t_train),yp1,'b-o')
grid on
legend('真实值','预测值')
xlabel('样本编号')
ylabel('带钢厚度')
 
figure
plot(1:length(t_test),t_test,'r',1:length(t_test),yp2,'b-o')
grid on
legend('真实值','预测值')
xlabel('样本编号')
ylabel('带钢厚度')
save R3.mat t_train yp1 t_test yp2  loss
82

4.本算法原理

基于差分进化灰狼混合优化的SVM(DE-GWO-SVM)数据预测算法是一种结合了差分进化(Differential Evolution, DE)和灰狼优化(Grey Wolf Optimizer, GWO)两种优化算法,用于优化支持向量机(Support Vector Machine, SVM)参数的混合优化方法。这种算法旨在提高SVM在数据预测任务中的性能,尤其是在处理复杂和高维数据时。

4.1 DE优化

4.2 GWO优化

更新灰狼位置:

融合DE和GWO:

在每次迭代中,先进行DE优化,生成新的种群。

然后,使用GWO优化,更新灰狼的位置。

通过这种方式,DE和GWO相互补充,提高了优化的效率和鲁棒性。

判断终止条件:

设定最大迭代次数或达到预定的适应度阈值时,终止优化过程。

选择适应度最高的个体作为最优参数组合。

DE-GWO-SVM算法通过结合DE和GWO两种优化算法,有效提高了SVM参数优化的效率和准确性。这种混合优化方法在处理复杂和高维数据时表现出色,适用于多种数据预测任务,如分类、回归和时间序列预测。通过合理设置参数和优化过程,DE-GWO-SVM算法可以显著提升模型的性能。

5.完整程序

VVV

相关推荐
2zcode12 小时前
基于Matlab图像处理的静态雨滴去除与质量评估系统
开发语言·图像处理·matlab
优化控制仿真模型18 小时前
基于变频与移相混合控制(PFM+PSM)的全桥LLC谐振变换器仿真模型
matlab
梦想的初衷~1 天前
MATLAB近红外光谱分析技术及实践技术应用
开发语言·支持向量机·matlab
2zcode1 天前
基于Matlab图像处理的瓶子自动检测与质量评估系统
开发语言·图像处理·matlab
zzc9211 天前
多信号实采数据加噪版本
matlab·usrp·高斯·gauss·时频图·多信号·实采信号
xiao5kou4chang6kai42 天前
MATLAB近红外光谱分析技术及实践技术
支持向量机·matlab·近红外光谱·光谱分析
微光-沫年2 天前
150-SWT-MCNN-BiGRU-Attention分类预测模型等!
机器学习·matlab·分类
青春不败 177-3266-05203 天前
MATLAB近红外光谱分析技术及实践技术应用
随机森林·机器学习·支持向量机·matlab·卷积神经网络·遗传算法·近红外光谱
简简单单做算法4 天前
基于LSTM深度学习网络的视频类型分类算法matlab仿真
深度学习·matlab·分类·lstm·视频类型分类
2zcode5 天前
基于Matlab图像处理的水果分级系统
图像处理·人工智能·matlab