PyTorch中的常见乘法运算(*、@、Mul、Matmul)

哈达玛积:torch.mul()、torch.dot()、*

两个相同尺寸的张量相乘,然后对应元素的相乘就是哈达玛积,这种乘法要求参与运算的矩阵唯独相同,运算结果还是一个相同维度的矩阵。在这个运算中,torch.mul()和*以及torch.dot()的作用是等价的:

python 复制代码
a = torch.tensor([1,2])
b = torch.tensor([2,3])
print(a*b)
print(torch.mul(a,b))
>>> tensor([2, 6])
>>> tensor([2, 6])

这与除法的运算规则相同,torch中的torch.div()其实就是/, 类似的:torch.add就是+,torch.sub()就是-,不过符号的运算更简单常用:

python 复制代码
a = torch.tensor([1.,2.])
b = torch.tensor([2.,3.])
print(a/b)
print(torch.div(a/b))
>>> tensor([0.5000, 0.6667])
>>> tensor([0.5000, 0.6667])

矩阵乘法:torch.mm()、torch.matmul()、@

如果参与运算的是一个多维张量,那么最好torch.matmul(),由于广播机制的原因,在多维张量中,参与矩阵运算的其实只有后两个维度,前面的维度则被认为是batch:

python 复制代码
a = torch.tensor([1.,2.])
b = torch.tensor([2.,3.]).view(1,2)
print(torch.mm(a, b))
print(torch.matmul(a, b))
print(a @ b)

tensor([[2., 3.],
        [4., 6.]])
tensor([[2., 3.],
        [4., 6.]])
tensor([[2., 3.],
        [4., 6.]])
相关推荐
WLJT1231231234 分钟前
AI懂你,家更暖:重塑生活温度的智能家电新范式
人工智能·生活
roman_日积跬步-终至千里22 分钟前
【计算机视觉(16)】语义理解-训练神经网络1_激活_预处理_初始化_BN
人工智能·神经网络·计算机视觉
AI营销实验室23 分钟前
原圈科技AI CRM系统引领2025文旅行业智能升级新趋势
人工智能·科技
AI营销前沿24 分钟前
私域AI首倡者韩剑,原圈科技领航AI营销
大数据·人工智能
咚咚王者24 分钟前
人工智能之数学基础 概率论与统计:第一章 基础概念
人工智能·概率论
_Li.25 分钟前
机器学习-集成学习
人工智能·机器学习·集成学习
Percent_bigdata32 分钟前
数据治理平台选型解析:AI大模型与智能体如何重塑企业数字基座
大数据·人工智能
牛客企业服务34 分钟前
AI面试监考:破解在线面试作弊难题
人工智能·面试·职场和发展
面包会有的,牛奶也会有的。37 分钟前
AI 测试平台:WHartTest V1.3.0 更新优化架构
人工智能
2501_941982051 小时前
结合 AI 视觉:使用 OCR 识别企业微信聊天记录中的图片信息
人工智能·ocr·企业微信