PyTorch中的常见乘法运算(*、@、Mul、Matmul)

哈达玛积:torch.mul()、torch.dot()、*

两个相同尺寸的张量相乘,然后对应元素的相乘就是哈达玛积,这种乘法要求参与运算的矩阵唯独相同,运算结果还是一个相同维度的矩阵。在这个运算中,torch.mul()和*以及torch.dot()的作用是等价的:

python 复制代码
a = torch.tensor([1,2])
b = torch.tensor([2,3])
print(a*b)
print(torch.mul(a,b))
>>> tensor([2, 6])
>>> tensor([2, 6])

这与除法的运算规则相同,torch中的torch.div()其实就是/, 类似的:torch.add就是+,torch.sub()就是-,不过符号的运算更简单常用:

python 复制代码
a = torch.tensor([1.,2.])
b = torch.tensor([2.,3.])
print(a/b)
print(torch.div(a/b))
>>> tensor([0.5000, 0.6667])
>>> tensor([0.5000, 0.6667])

矩阵乘法:torch.mm()、torch.matmul()、@

如果参与运算的是一个多维张量,那么最好torch.matmul(),由于广播机制的原因,在多维张量中,参与矩阵运算的其实只有后两个维度,前面的维度则被认为是batch:

python 复制代码
a = torch.tensor([1.,2.])
b = torch.tensor([2.,3.]).view(1,2)
print(torch.mm(a, b))
print(torch.matmul(a, b))
print(a @ b)

tensor([[2., 3.],
        [4., 6.]])
tensor([[2., 3.],
        [4., 6.]])
tensor([[2., 3.],
        [4., 6.]])
相关推荐
良策金宝AI1 小时前
让端子排接线图“智能生成”,良策金宝AI推出变电站二次智能设计引擎
大数据·人工智能·工程设计·变电站ai
天云数据1 小时前
神经网络,人类表达的革命
人工智能·深度学习·神经网络·机器学习
xixixi777772 小时前
2026 年 02 月 13 日 AI 前沿、通信和安全行业日报
人工智能·安全·ai·大模型·通信·市场
独自归家的兔2 小时前
深度学习之 CNN:如何在图像数据的海洋中精准 “捕捞” 特征?
人工智能·深度学习·cnn
X54先生(人文科技)2 小时前
20260211_AdviceForTraditionalProgrammers
数据库·人工智能·ai编程
梦想画家2 小时前
数据治理5大核心概念:分清、用好,支撑AI智能化应用
人工智能·数据治理
yhdata2 小时前
锁定2032年!区熔硅单晶市场规模有望达71.51亿元,赛道前景持续向好
大数据·人工智能
deephub3 小时前
RAG 文本分块:七种主流策略的原理与适用场景
人工智能·深度学习·大语言模型·rag·检索
newBorn_19913 小时前
ops-transformer RoPE位置编码 复数旋转硬件加速实战
人工智能·深度学习·transformer·cann