PyTorch中的常见乘法运算(*、@、Mul、Matmul)

哈达玛积:torch.mul()、torch.dot()、*

两个相同尺寸的张量相乘,然后对应元素的相乘就是哈达玛积,这种乘法要求参与运算的矩阵唯独相同,运算结果还是一个相同维度的矩阵。在这个运算中,torch.mul()和*以及torch.dot()的作用是等价的:

python 复制代码
a = torch.tensor([1,2])
b = torch.tensor([2,3])
print(a*b)
print(torch.mul(a,b))
>>> tensor([2, 6])
>>> tensor([2, 6])

这与除法的运算规则相同,torch中的torch.div()其实就是/, 类似的:torch.add就是+,torch.sub()就是-,不过符号的运算更简单常用:

python 复制代码
a = torch.tensor([1.,2.])
b = torch.tensor([2.,3.])
print(a/b)
print(torch.div(a/b))
>>> tensor([0.5000, 0.6667])
>>> tensor([0.5000, 0.6667])

矩阵乘法:torch.mm()、torch.matmul()、@

如果参与运算的是一个多维张量,那么最好torch.matmul(),由于广播机制的原因,在多维张量中,参与矩阵运算的其实只有后两个维度,前面的维度则被认为是batch:

python 复制代码
a = torch.tensor([1.,2.])
b = torch.tensor([2.,3.]).view(1,2)
print(torch.mm(a, b))
print(torch.matmul(a, b))
print(a @ b)

tensor([[2., 3.],
        [4., 6.]])
tensor([[2., 3.],
        [4., 6.]])
tensor([[2., 3.],
        [4., 6.]])
相关推荐
余生H2 分钟前
transformer.js(三):底层架构及性能优化指南
javascript·深度学习·架构·transformer
果冻人工智能21 分钟前
2025 年将颠覆商业的 8 大 AI 应用场景
人工智能·ai员工
代码不行的搬运工23 分钟前
神经网络12-Time-Series Transformer (TST)模型
人工智能·神经网络·transformer
石小石Orz25 分钟前
Three.js + AI:AI 算法生成 3D 萤火虫飞舞效果~
javascript·人工智能·算法
罗小罗同学31 分钟前
医工交叉入门书籍分享:Transformer模型在机器学习领域的应用|个人观点·24-11-22
深度学习·机器学习·transformer
孤独且没人爱的纸鹤34 分钟前
【深度学习】:从人工神经网络的基础原理到循环神经网络的先进技术,跨越智能算法的关键发展阶段及其未来趋势,探索技术进步与应用挑战
人工智能·python·深度学习·机器学习·ai
阿_旭36 分钟前
TensorFlow构建CNN卷积神经网络模型的基本步骤:数据处理、模型构建、模型训练
人工智能·深度学习·cnn·tensorflow
羊小猪~~37 分钟前
tensorflow案例7--数据增强与测试集, 训练集, 验证集的构建
人工智能·python·深度学习·机器学习·cnn·tensorflow·neo4j
极客代码44 分钟前
【Python TensorFlow】进阶指南(续篇三)
开发语言·人工智能·python·深度学习·tensorflow
zhangfeng113344 分钟前
pytorch 的交叉熵函数,多分类,二分类
人工智能·pytorch·分类