【深度学习】Qwen2-VL API速度测试与部署

在我最近的博客中,我深入探讨了如何使用 Qwen2-VL 模型来优化图像处理的显存占用和 API 服务的配置。这篇文章针对想要高效利用 vllm 的开发者提供了实用的指南,包括如何启动 Docker 镜像、安装必要的依赖,以及如何配置 max_pixels 参数以平衡性能与计算资源消耗。

我详细介绍了使用 Docker 启动 Qwen2-VL 的步骤,分享了相关的代码示例,并讨论了显存占用问题。通过实际测试,我还展示了不同配置下的平均执行时间和显存占用情况,帮助读者了解如何优化其模型的性能。

如果你对如何配置和使用 Qwen2-VL 模型感兴趣,或者希望提升图像处理的效率,欢迎查看我的完整博客,获取更多细节和代码示例:

https://www.dong-blog.fun/post/1741

相关推荐
一点.点1 小时前
李沐动手深度学习(pycharm中运行笔记)——04.数据预处理
pytorch·笔记·python·深度学习·pycharm·动手深度学习
一点.点1 小时前
李沐动手深度学习(pycharm中运行笔记)——07.自动求导
pytorch·笔记·python·深度学习·pycharm·动手深度学习
thesky1234562 小时前
llama factory怎么命令行推理图片
深度学习·llama
契合qht53_shine2 小时前
深度学习 视觉处理(CNN) day_01
人工智能·深度学习·cnn
是瑶瑶子啦2 小时前
【深度学习】多头注意力机制的实现|pytorch
人工智能·pytorch·深度学习
进来有惊喜4 小时前
循环神经网络RNN---LSTM
人工智能·rnn·深度学习
零零刷6 小时前
德州仪器(TI)—TDA4VM芯片详解(1)—产品特性
人工智能·嵌入式硬件·深度学习·神经网络·自动驾驶·硬件架构·硬件工程
搏博7 小时前
机器学习之三:归纳学习
人工智能·深度学习·学习·机器学习
何双新8 小时前
第2讲、Tensor高级操作与自动求导详解
深度学习
龙萱坤诺9 小时前
图像生成新势力:GPT-Image-1 与 GPT-4o 在智创聚合 API 的较量
人工智能·深度学习·计算机视觉