3 机器学习之假设空间

归纳(induction)与演绎(deduction)是科学推理的两大基本手段。前者是从特殊到一般的"泛化"(generalization)过程,即从具体的事实归结出一般性规律;后者则是从一般到特殊的"特化"(specialization)过程,即从基础原理推演出具体状况。例如,在数学公理系统中,基于一组公理和推理规则推导出与之相洽的定理,这是演绎;而"从样例中学习"显然是一个归纳的过程,因此亦称"归纳学习"(inductivelearning)。

归纳学习有狭义与广义之分,广义的归纳学习大体相当于从样例中学习,而狭义的归纳学习则要求从训练数据中学得概念(concept),因此亦称为"概念学习"或"概念形成"​。概念学习技术目前研究、应用都比较少,因为要学得泛化性能好且语义明确的概念实在太困难了,现实常用的技术大多是产生"黑箱"模型。然而,对概念学习有所了解,有助于理解机器学习的一些基础思想。

概念学习中最基本的是布尔概念学习,即对"是"​"不是"这样的可表示为0/1布尔值的目标概念的学习。举一个简单的例子,假定我们获得了这样一个训练数据集:

表1.1 西瓜数据集

更一般的情况是考虑形如(A∧B)∨(C∧D)的析合范式。

这里要学习的目标是"好瓜"​。暂且假设"好瓜"可由"色泽"​"根蒂"​"敲声"这三个因素完全确定,换言之,只要某个瓜的这三个属性取值明确了,我们就能判断出它是不是好瓜。于是,我们学得的将是"好瓜是某种色泽、某种根蒂、某种敲声的瓜"这样的概念,用布尔表达式写出来则是"好瓜。​(色泽=?​)∧(根蒂=?​)∧(敲声=?​)​"​,这里"​?​"表示尚未确定的取值,而我们的任务就是通过对表1.1的训练集进行学习,把"​?​"确定下来。

"记住"训练样本,就能力。如果仅仅把训练集中的瓜"记住"​,是所谓的"机械学习"​[Cohen and Feigenbaum,1983]​,或称"死记硬背式学习"​,参见(1.5 发展历程)​。

读者可能马上发现,表1.1第一行:​"​(色泽=青绿)∧(根蒂=蜷缩)∧(敲声=浊响)​"不就是好瓜吗?是的,但这是一个已见过的瓜,别忘了我们学习的目的是"泛化"​,即通过对训练集中瓜的学习以获得对没见过的瓜进行判断的能力。如果仅仅把训练集中的瓜"记住"​,今后再见到一模一样的瓜当然可判断,但是,对没见过的瓜,例如"​(色泽=浅白)∧(根蒂=蜷缩)∧(敲声=浊响)​"怎么办呢?

这里我们假定训练样本不含噪声,并且不考虑"非青绿"这样的操作。由于训练集包含正例,因此假设自然不出现。

我们可以把学习过程看作一个在所有假设(hypothesis)组成的空间中进行搜索的过程,搜索目标是找到与训练集"匹配"(fit)的假设,即能够将训练集中的瓜判断正确的假设。假设的表示一旦确定,假设空间及其规模大小就确定了。这里我们的假设空间由形如"​(色泽=?​)∧(根蒂=?​)∧(敲声=?​)​"的可能取值所形成的假设组成。例如色泽有"青绿"​"乌黑"​"浅白"这三种可能取值;还需考虑到,也许"色泽"无论取什么值都合适,我们用通配符""来表示,例如"好瓜。​(色泽= )∧(根蒂=蜷缩)∧(敲声=浊响)​"​,即"好瓜是根蒂蜷缩、敲声浊响的瓜,什么色泽都行"​。此外,还需考虑极端情况:有可能"好瓜"这个概念根本就不成立,世界上没有"好瓜"这种东西;我们用表示这个假设。这样,若"色泽"​"根蒂"​"敲声"分别有3、3、3种可能取值,则我们面临的假设空间规模大小为4×4×4+1=65。图1.1直观地显示出了这个西瓜问题假设空间。

图1.1 西瓜问题的假设空间

有许多可能的选择,如在路径上自顶向下与自底向上同时进行,在操作上只删除与正例不一致的假设等。

可以有许多策略对这个假设空间进行搜索,例如自顶向下、从一般到特殊,或是自底向上、从特殊到一般,搜索过程中可以不断删除与正例不一致的假设、和(或)与反例一致的假设。最终将会获得与训练集一致(即对所有训练样本能够进行正确判断)的假设,这就是我们学得的结果。

需注意的是,现实问题中我们常面临很大的假设空间,但学习过程是基于有限样本训练集进行的,因此,可能有多个假设与训练集一致,即存在着一个与训练集一致的"假设集合"​,我们称之为"版本空间"(version space)。例如,在西瓜问题中,与表1.1训练集所对应的版本空间如图1.2所示。

图1.2 西瓜问题的版本空

相关推荐
艾莉丝努力练剑2 分钟前
实时视频流处理:利用ops-cv构建高性能CV应用
人工智能·cann
程序猿追2 分钟前
深度解析CANN ops-nn仓库 神经网络算子的性能优化与实践
人工智能·神经网络·性能优化
User_芊芊君子5 分钟前
CANN_PTO_ISA虚拟指令集全解析打造跨平台高性能计算的抽象层
人工智能·深度学习·神经网络
初恋叫萱萱9 分钟前
CANN 生态安全加固指南:构建可信、鲁棒、可审计的边缘 AI 系统
人工智能·安全
机器视觉的发动机14 分钟前
AI算力中心的能耗挑战与未来破局之路
开发语言·人工智能·自动化·视觉检测·机器视觉
铁蛋AI编程实战17 分钟前
通义千问 3.5 Turbo GGUF 量化版本地部署教程:4G 显存即可运行,数据永不泄露
java·人工智能·python
HyperAI超神经22 分钟前
在线教程|DeepSeek-OCR 2公式/表格解析同步改善,以低视觉token成本实现近4%的性能跃迁
开发语言·人工智能·深度学习·神经网络·机器学习·ocr·创业创新
JoySSLLian35 分钟前
手把手教你安装免费SSL证书(附宝塔/Nginx/Apache配置教程)
网络·人工智能·网络协议·tcp/ip·nginx·apache·ssl
BestSongC36 分钟前
行人摔倒检测系统 - 前端文档(1)
前端·人工智能·目标检测
空白诗36 分钟前
CANN ops-nn 算子解读:Stable Diffusion 图像生成中的 Conv2D 卷积实现
深度学习·计算机视觉·stable diffusion