树莓派应用--AI项目实战篇来啦-9.OpenCV实现汽车检测

1.介绍

该项目使用的汽车检测使用的也是 haar 模型。这是一种基于机器学习的汽车检测算法。它使用了 Haar 特征来检测汽车,可以在图像中快速检测到汽车并输出其位置。采用该方法检测速度较快,但准确率略低。

2.OpenCV 实现汽车检测

可以采用官方自带的汽车检测 HAAR 分类器实现对视频的汽车检测,也可以自己改成摄像头的方式。

3.源程序代码

python 复制代码
# 载入必要的库
import cv2
import time
import numpy as np

# 载入HAAR分类器
car_classifier = cv2.CascadeClassifier('./images/haarcascade_car.xml')
# 载入视频文件
cap = cv2.VideoCapture('./images/cars.avi')

# 线程函数操作库
import threading # 线程
import ctypes
import inspect

# 线程结束代码
def _async_raise(tid, exctype):
    tid = ctypes.c_long(tid)
    if not inspect.isclass(exctype):
        exctype = type(exctype)
    res = ctypes.pythonapi.PyThreadState_SetAsyncExc(tid, ctypes.py_object(exctype))
    if res == 0:
        raise ValueError("invalid thread id")
    elif res != 1:
        ctypes.pythonapi.PyThreadState_SetAsyncExc(tid, None)
        raise SystemError("PyThreadState_SetAsyncExc failed")
        
def stop_thread(thread):
    _async_raise(thread.ident, SystemExit)

# 创建显示控件
def bgr8_to_jpeg(value, quality=75):
    return bytes(cv2.imencode('.jpg', value)[1])
    
import traitlets
import ipywidgets.widgets as widgets
from IPython.display import display
car_imge = widgets.Image(format='jpeg', width=480, height=320)
display(car_imge)

#一旦视频成功加载,循环播放
def car_Video_display():
    while cap.isOpened():
        time.sleep(.05)
        # Read first frame
        ret, frame = cap.read()
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        
        # Pass frame to our car classifier
        cars = car_classifier.detectMultiScale(gray, 1.4, 2)       
        # Extract bounding boxes for any bodies identified
        for (x,y,w,h) in cars:
            cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 255), 2)
            car_imge.value = bgr8_to_jpeg(frame)
    cap.release()

t = threading.Thread(target=car_Video_display)
t.setDaemon(True)
t.start()

# 结束线程
stop_thread(t)
相关推荐
行者无疆_ty5 分钟前
什么是Node.js,跟OpenCode/OpenClaw有什么关系?
人工智能·node.js·openclaw
AC赳赳老秦13 分钟前
2026国产算力新周期:DeepSeek实战适配英伟达H200,引领大模型训练效率跃升
大数据·前端·人工智能·算法·tidb·memcache·deepseek
工程师老罗13 分钟前
基于Pytorch的YOLOv1 的网络结构代码
人工智能·pytorch·yolo
xfddlm17 分钟前
边缘计算_ubuntu环境下使用瑞芯微RK3576NPU推理LLM
人工智能·ubuntu·边缘计算
日晨难再35 分钟前
DSO.ai:基于AI的搜索优化型EDA工具介绍
人工智能·数字ic
机器学习之心HML36 分钟前
多光伏电站功率预测新思路:当GCN遇见LSTM,解锁时空预测密码,python代码
人工智能·python·lstm
JarryStudy42 分钟前
HCCL与PyTorch集成 hccl_comm.cpp DDP后端注册全流程
人工智能·pytorch·python·cann
大闲在人1 小时前
10. 配送中心卡车卸货流程分析:产能利用率与利特尔法则的实践应用
人工智能·供应链管理·智能制造·工业工程
woshikejiaih1 小时前
**播客听书与有声书区别解析2026指南,适配不同场景的音频
大数据·人工智能·python·音视频
qq7422349841 小时前
APS系统与OR-Tools完全指南:智能排产与优化算法实战解析
人工智能·算法·工业·aps·排程