树莓派应用--AI项目实战篇来啦-9.OpenCV实现汽车检测

1.介绍

该项目使用的汽车检测使用的也是 haar 模型。这是一种基于机器学习的汽车检测算法。它使用了 Haar 特征来检测汽车,可以在图像中快速检测到汽车并输出其位置。采用该方法检测速度较快,但准确率略低。

2.OpenCV 实现汽车检测

可以采用官方自带的汽车检测 HAAR 分类器实现对视频的汽车检测,也可以自己改成摄像头的方式。

3.源程序代码

python 复制代码
# 载入必要的库
import cv2
import time
import numpy as np

# 载入HAAR分类器
car_classifier = cv2.CascadeClassifier('./images/haarcascade_car.xml')
# 载入视频文件
cap = cv2.VideoCapture('./images/cars.avi')

# 线程函数操作库
import threading # 线程
import ctypes
import inspect

# 线程结束代码
def _async_raise(tid, exctype):
    tid = ctypes.c_long(tid)
    if not inspect.isclass(exctype):
        exctype = type(exctype)
    res = ctypes.pythonapi.PyThreadState_SetAsyncExc(tid, ctypes.py_object(exctype))
    if res == 0:
        raise ValueError("invalid thread id")
    elif res != 1:
        ctypes.pythonapi.PyThreadState_SetAsyncExc(tid, None)
        raise SystemError("PyThreadState_SetAsyncExc failed")
        
def stop_thread(thread):
    _async_raise(thread.ident, SystemExit)

# 创建显示控件
def bgr8_to_jpeg(value, quality=75):
    return bytes(cv2.imencode('.jpg', value)[1])
    
import traitlets
import ipywidgets.widgets as widgets
from IPython.display import display
car_imge = widgets.Image(format='jpeg', width=480, height=320)
display(car_imge)

#一旦视频成功加载,循环播放
def car_Video_display():
    while cap.isOpened():
        time.sleep(.05)
        # Read first frame
        ret, frame = cap.read()
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        
        # Pass frame to our car classifier
        cars = car_classifier.detectMultiScale(gray, 1.4, 2)       
        # Extract bounding boxes for any bodies identified
        for (x,y,w,h) in cars:
            cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 255), 2)
            car_imge.value = bgr8_to_jpeg(frame)
    cap.release()

t = threading.Thread(target=car_Video_display)
t.setDaemon(True)
t.start()

# 结束线程
stop_thread(t)
相关推荐
电子手信5 分钟前
知识中台在多语言客户中的应用
大数据·人工智能·自然语言处理·数据挖掘·知识图谱
不高明的骗子6 分钟前
【深度学习之一】2024最新pytorch+cuda+cudnn下载安装搭建开发环境
人工智能·pytorch·深度学习·cuda
Chef_Chen18 分钟前
从0开始学习机器学习--Day33--机器学习阶段总结
人工智能·学习·机器学习
搏博18 分钟前
神经网络问题之:梯度不稳定
人工智能·深度学习·神经网络
GL_Rain35 分钟前
【OpenCV】Could NOT find TIFF (missing: TIFF_LIBRARY TIFF_INCLUDE_DIR)
人工智能·opencv·计算机视觉
shansjqun40 分钟前
教学内容全覆盖:航拍杂草检测与分类
人工智能·分类·数据挖掘
狸克先生42 分钟前
如何用AI写小说(二):Gradio 超简单的网页前端交互
前端·人工智能·chatgpt·交互
baiduopenmap1 小时前
百度世界2024精选公开课:基于地图智能体的导航出行AI应用创新实践
前端·人工智能·百度地图
小任同学Alex1 小时前
浦语提示词工程实践(LangGPT版,服务器上部署internlm2-chat-1_8b,踩坑很多才完成的详细教程,)
人工智能·自然语言处理·大模型
新加坡内哥谈技术1 小时前
微软 Ignite 2024 大会
人工智能