树莓派应用--AI项目实战篇来啦-9.OpenCV实现汽车检测

1.介绍

该项目使用的汽车检测使用的也是 haar 模型。这是一种基于机器学习的汽车检测算法。它使用了 Haar 特征来检测汽车,可以在图像中快速检测到汽车并输出其位置。采用该方法检测速度较快,但准确率略低。

2.OpenCV 实现汽车检测

可以采用官方自带的汽车检测 HAAR 分类器实现对视频的汽车检测,也可以自己改成摄像头的方式。

3.源程序代码

python 复制代码
# 载入必要的库
import cv2
import time
import numpy as np

# 载入HAAR分类器
car_classifier = cv2.CascadeClassifier('./images/haarcascade_car.xml')
# 载入视频文件
cap = cv2.VideoCapture('./images/cars.avi')

# 线程函数操作库
import threading # 线程
import ctypes
import inspect

# 线程结束代码
def _async_raise(tid, exctype):
    tid = ctypes.c_long(tid)
    if not inspect.isclass(exctype):
        exctype = type(exctype)
    res = ctypes.pythonapi.PyThreadState_SetAsyncExc(tid, ctypes.py_object(exctype))
    if res == 0:
        raise ValueError("invalid thread id")
    elif res != 1:
        ctypes.pythonapi.PyThreadState_SetAsyncExc(tid, None)
        raise SystemError("PyThreadState_SetAsyncExc failed")
        
def stop_thread(thread):
    _async_raise(thread.ident, SystemExit)

# 创建显示控件
def bgr8_to_jpeg(value, quality=75):
    return bytes(cv2.imencode('.jpg', value)[1])
    
import traitlets
import ipywidgets.widgets as widgets
from IPython.display import display
car_imge = widgets.Image(format='jpeg', width=480, height=320)
display(car_imge)

#一旦视频成功加载,循环播放
def car_Video_display():
    while cap.isOpened():
        time.sleep(.05)
        # Read first frame
        ret, frame = cap.read()
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        
        # Pass frame to our car classifier
        cars = car_classifier.detectMultiScale(gray, 1.4, 2)       
        # Extract bounding boxes for any bodies identified
        for (x,y,w,h) in cars:
            cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 255), 2)
            car_imge.value = bgr8_to_jpeg(frame)
    cap.release()

t = threading.Thread(target=car_Video_display)
t.setDaemon(True)
t.start()

# 结束线程
stop_thread(t)
相关推荐
埃菲尔铁塔_CV算法6 分钟前
双线性插值算法:原理、实现、优化及在图像处理和多领域中的广泛应用与发展趋势(二)
c++·人工智能·算法·机器学习·计算机视觉
程序猿阿伟16 分钟前
《AI赋能鸿蒙Next,打造极致沉浸感游戏》
人工智能·游戏·harmonyos
遇健李的幸运32 分钟前
深入浅出:Agent如何调用工具——从OpenAI Function Call到CrewAI框架
人工智能
天天讯通34 分钟前
AI语音机器人大模型是什么?
人工智能·机器人
说私域41 分钟前
微商关系维系与服务创新:链动2+1模式、AI智能名片与S2B2C商城小程序的应用研究
人工智能·小程序
人机与认知实验室1 小时前
人-AI协同如何重塑未来战争?
人工智能
学技术的大胜嗷1 小时前
小目标检测难点分析和解决策略
人工智能·目标检测·计算机视觉
李加号pluuuus1 小时前
【论文阅读+复现】High-fidelity Person-centric Subject-to-Image Synthesis
论文阅读·人工智能·计算机视觉
XianxinMao2 小时前
o3模型重大突破:引领推理语言模型新纪元,展望2025年AI发展新格局
人工智能·语言模型
martian6652 小时前
深入详解人工智能自然语言处理(NLP)之文本处理:分词、词性标注、命名实体识别
人工智能·自然语言处理