树莓派应用--AI项目实战篇来啦-9.OpenCV实现汽车检测

1.介绍

该项目使用的汽车检测使用的也是 haar 模型。这是一种基于机器学习的汽车检测算法。它使用了 Haar 特征来检测汽车,可以在图像中快速检测到汽车并输出其位置。采用该方法检测速度较快,但准确率略低。

2.OpenCV 实现汽车检测

可以采用官方自带的汽车检测 HAAR 分类器实现对视频的汽车检测,也可以自己改成摄像头的方式。

3.源程序代码

python 复制代码
# 载入必要的库
import cv2
import time
import numpy as np

# 载入HAAR分类器
car_classifier = cv2.CascadeClassifier('./images/haarcascade_car.xml')
# 载入视频文件
cap = cv2.VideoCapture('./images/cars.avi')

# 线程函数操作库
import threading # 线程
import ctypes
import inspect

# 线程结束代码
def _async_raise(tid, exctype):
    tid = ctypes.c_long(tid)
    if not inspect.isclass(exctype):
        exctype = type(exctype)
    res = ctypes.pythonapi.PyThreadState_SetAsyncExc(tid, ctypes.py_object(exctype))
    if res == 0:
        raise ValueError("invalid thread id")
    elif res != 1:
        ctypes.pythonapi.PyThreadState_SetAsyncExc(tid, None)
        raise SystemError("PyThreadState_SetAsyncExc failed")
        
def stop_thread(thread):
    _async_raise(thread.ident, SystemExit)

# 创建显示控件
def bgr8_to_jpeg(value, quality=75):
    return bytes(cv2.imencode('.jpg', value)[1])
    
import traitlets
import ipywidgets.widgets as widgets
from IPython.display import display
car_imge = widgets.Image(format='jpeg', width=480, height=320)
display(car_imge)

#一旦视频成功加载,循环播放
def car_Video_display():
    while cap.isOpened():
        time.sleep(.05)
        # Read first frame
        ret, frame = cap.read()
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        
        # Pass frame to our car classifier
        cars = car_classifier.detectMultiScale(gray, 1.4, 2)       
        # Extract bounding boxes for any bodies identified
        for (x,y,w,h) in cars:
            cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 255), 2)
            car_imge.value = bgr8_to_jpeg(frame)
    cap.release()

t = threading.Thread(target=car_Video_display)
t.setDaemon(True)
t.start()

# 结束线程
stop_thread(t)
相关推荐
小憩-10 分钟前
【机器学习】吴恩达机器学习笔记
人工智能·笔记·机器学习
却道天凉_好个秋37 分钟前
深度学习(二):神经元与神经网络
人工智能·神经网络·计算机视觉·神经元
UQI-LIUWJ38 分钟前
unsloth笔记:运行&微调 gemma
人工智能·笔记·深度学习
THMAIL41 分钟前
深度学习从入门到精通 - 生成对抗网络(GAN)实战:创造逼真图像的魔法艺术
人工智能·python·深度学习·神经网络·机器学习·生成对抗网络·cnn
却道天凉_好个秋43 分钟前
计算机视觉(八):开运算和闭运算
人工智能·计算机视觉·开运算与闭运算
无风听海44 分钟前
神经网络之深入理解偏置
人工智能·神经网络·机器学习·偏置
JoinApper1 小时前
目标检测系列-Yolov5下载及运行
人工智能·yolo·目标检测
飞哥数智坊1 小时前
即梦4.0实测:我真想对PS说“拜拜”了!
人工智能
fantasy_arch2 小时前
9.3深度循环神经网络
人工智能·rnn·深度学习
Ai工具分享2 小时前
视频画质差怎么办?AI优化视频清晰度技术原理与实战应用
人工智能·音视频