Spark:DataFrame介绍及使用

1. DataFrame详解

DataFrame是基于RDD进行封装的结构化数据类型,增加了schema元数据,最终DataFrame类型在计算时,还是转为rdd计算。DataFrame的结构化数据有Row(行数据)和schema元数据构成。

  • Row 类型 表示一行数据
    • DataFrame就算是多行构成
python 复制代码
# 导入行类Row
from pyspark.sql import Row

# 创建行数据
r1 = Row(1, '张三', 20)

# 行数取取值 按照下标取值
data = r1[0]
print(data)
data1 = r1[1]
print(data1)

# 指定字段创建行数据
r2 = Row(id=2, name='李四', age=22)
# 按照字段取值
data3 = r2['id']
print(data3)
data4 = r2['name']
print(data4)
  • schema表信息
    • 定义DataFrame中的表的字段名和字段类型。
python 复制代码
# 导入数据类型
from pyspark.sql.types import *

# 定义schema信息
# 使用StructType类进行定义
# add()方法是指定字段信息
# 第一参数,字段名
# 第二个参数,字段信息
# 第三个参数是否允许为空值  默认是True,允许为空
schema_type = StructType().\
    add('id',IntegerType()).\
    add('name',StringType()).\
    add('age',IntegerType(),False)

2. DataFrame创建

创建datafram数据需要使用一个sparksession的类创建,SparkSession类是在SparkContext的基础上进行了封装,也就是SparkSession类中包含了SparkContext。

2.1 基本创建

python 复制代码
#DataFrame 的基本创建
#Row就是行数据定义的类
from pyspark.sql import Row, SparkSession
from pyspark.sql.types import *

#行数据创建
r1 = Row(1,"刘向阳",23,'男')
print(r1)

#行数据下标取值
print(r1[0])
print(r1[1])

#创建行数据时可以指定字段名
r2 = Row(id=2,name='李四',age=20,gender='女')
print(r2)
#使用字段名取值
print(r2['name'])

# 定义元数据
schema = (StructType().add('id', IntegerType()).add('username', StringType()).add('age', IntegerType()).add('gender', StringType()))
print(schema)

# 将元数据和行数据放在一起合成DataFrame
ss = SparkSession.builder.getOrCreate()

# 调用创建df的方法
df = ss.createDataFrame([r1,r2],schema=schema)

# 查看df中数据
df.show()

#查看元数据信息
df.printSchema()

运行结果:

2.2 RDD和DF之间的转化

  • rdd的二维数据转化为DataFrame
    • rdd.toDF()
python 复制代码
# rdd 和 dataframe的转化
from pyspark.sql import SparkSession

#创建SparkSession对象
ss = SparkSession.builder.getOrCreate()

#基于ss对象获取sparkContext
sc = ss.sparkContext

#创建rdd , 要使用二维列表指定每行数据
rdd = sc.parallelize([[1,'张三',20,'男'],[2,'李四',20,'男']])

#将rdd转为df
df = rdd.toDF(schema='id int,name string,age int,gender string')

#df数据查看
df.show()
df.printSchema()

#df可以转rdd
res = df.rdd.collect()
print(res)

rdd2 = df.rdd.map(lambda x:x['name'])

res2 = rdd2.collect()
print(res2)

运行结果:

2.3 pandas和spark之间转化

  • spark的df转为pandas的df
    • toPandas
python 复制代码
#pandas 和 spark的dataframe转化
from pyspark.sql import SparkSession
import pandas as pd

ss = SparkSession.builder.getOrCreate()

#创建pandas的df
df_pd = pd.DataFrame(
    {
        'id':[1,2,3,4],
        'name':['张三','李四','王五','赵六'],
        'age':[1,2,3,4],
        'gender':['男','女','女','女']
    }
)
#查看数据
print(df_pd)

#取值
name = df_pd['name'][0]
print(name)
# 将pandas中的df转为spark的df
df_spark = ss.createDataFrame(df_pd)

#查看
df_spark.show()

#取值
row = df_spark.limit(1).first()
print(row['name'])

#将spark的df重新转为pandas的df
df_pandas = df_spark.toPandas()
print(df_pandas)

运行结果:

2.4 读取文件数据转为df

通过read方法读取数据转为df

  • ss.read
python 复制代码
#读取文件转为df
from pyspark.sql import SparkSession

ss = SparkSession.builder.getOrCreate()

#读取不同文件数据转为df
# txt文件
df = ss.read.text('hdfs://node1:8020/data/students.txt')
df.show()

# json 文件
df_json = ss.read.json('hdfs://node1:8020/data/baike_qa_valid.json')
df_json.show()

#orc文件
df_orc = ss.read.orc('hdfs://node1:8020/data/users.orc')
df_orc.show()

#去取csv文件
#header或csv文件中的第一行作为表头字段数据
df_csv = ss.read.csv('hdfs://node1:8020/data/students.csv')
df_csv.show()

3. DataFrame基本使用

3.1 SQL语句

使用sparksession提供的sql方法,编写sql语句执行

python 复制代码
#使用sql操作dataframe结构化数据
from pyspark.sql import SparkSession

ss = SparkSession.builder.getOrCreate()

#读取文件数据转为df
df_csv = ss.read.csv('hdfs://node1:8020/data/students.csv', header=True,sep=',')

#使用sql操作df数据
#将df指定一个临时表名
df_csv.createTempView('stu')

#编写sql字符串语句,支持hivesql语法
sql_str ="""
select * from stu 
"""

#执行sql语句,执行结果返回一个新的df
df_res = ss.sql(sql_str)
df_csv.show()
df_res.show()

3.2 DSL方法

DSL方法是df提供的数据操作函数

使用方式:

  • df.方法()
  • 可以进行链式调用
  • df.方法().方法().方法()
  • 方法执行后返回一个新的df保存计算结果
  • new_df = df.方法()

spark提供DSL方法和sql的关键词一样,使用方式和sql基本类似,在进行数据处理时,要按照sql的执行顺序去思考如何处理数据。

from join 知道数据在哪 df本身就是要处理的数据 df.join(df2) from 表

where 过滤需要处理的数据 df.join(df2).where()

group by 聚合 数据的计算 df.join(df2).where().groupby().sum()

having 计算后的数据进行过滤 df.join(df2).where().groupby().sum().where()

select 展示数据的字段 df.join(df2).where().groupby().sum().where().select()

order by 展示数据的排序 df.join(df2).where().groupby().sum().where().select().orderBy()

limit 展示数据的数量 df.join(df2).where().groupby().sum().where().select().orderBy().limit()
DSL方法执行完成后会得到一个处理后的新的df

python 复制代码
#使用DSL方法操作dataframe
from pyspark.sql import SparkSession

ss = SparkSession.builder.getOrCreate()

#读取文件数据转为df
df_csv = ss.read.csv('hdfs://node1/data/students.csv', header=True,sep=',')

#使用DSL方法对df数据进行操作
df2 = df_csv.select('id','name')

#查看结果
df2.show()

#第二种指定字段的方式
df3 = df_csv.select(df_csv.age,df_csv.gender)

#给字段起别名
df4 = df_csv.select(df_csv.age.alias('new_age'),df_csv.gender)
df4.show()

#修改字段类型
df_csv.printSchema()
df5 = df_csv.select(df_csv.age.cast('int'),df_csv.gender)
df5.printSchema()

#where 的数据过滤
age = 20
df6 = df_csv.where(f'age > {age}')
df6.show()

#过滤年龄大于20并且性别为女性的学生信息
df7 = df_csv.where(f'age > 20 and gender = "女" ')
df7.show()

#使用第二种字段判断方式
df8 = df_csv.where(df_csv.age == age)
df8.show()

#分组聚合计算
df9 = df_csv.select(df_csv.gender,df_csv.cls,df_csv.age.cast('int').alias('age')).groupby('gender','cls').sum('age')
df9.show()

#分组后过滤where 聚合计算时只能一次计算一个聚合数据
df10 = df_csv.select(df_csv.gender,df_csv.cls,df_csv.age.cast('int').alias('age')).groupby('gender','cls').sum('age').where('sum(age) > 80')
df10.show()

#排序
df11 = df_csv.orderBy('age')  #默认排序
df11.show()

df12 = df_csv.orderBy('age',ascending=False)  #降序
df12.show()

#分页
df13 = df_csv.limit(5)
df13.show()

#转为rdd
res = df_csv.rdd.collect()[5:10]
print(res)
df_new = ss.createDataFrame(res)
df_new.show()
相关推荐
萧鼎43 分钟前
【Python】高效数据处理:使用Dask处理大规模数据
开发语言·python
互联网杂货铺1 小时前
Python测试框架—pytest详解
自动化测试·软件测试·python·测试工具·测试用例·pytest·1024程序员节
Ellie陈1 小时前
Java已死,大模型才是未来?
java·开发语言·前端·后端·python
菜鸟的人工智能之路1 小时前
ROC 曲线:医学研究中的得力助手
python·数据分析·健康医疗
梦幻精灵_cq2 小时前
python包结构模块如何有效传递数据?
python
黑叶白树2 小时前
包和模块(上) python复习笔记
开发语言·笔记·python
Ivanqhz2 小时前
Spark RDD
大数据·分布式·spark
小黑032 小时前
Spark SQL DSL
大数据·sql·spark
铁盒薄荷糖3 小时前
【Pytorch】Pytorch的安装
人工智能·pytorch·python
yyfhq3 小时前
rescorediff
python·深度学习·机器学习