python机器学习(02-混淆矩阵及精确率_召回率_F1值计算)

"""

案例:

演示 逻辑回归模型的 评估方式, 即: 精确率, 召回率, F1值.

混淆矩阵解释:

概述:

用来描述 真实值(样本值)中 正例, 反例 和 预测值的正例, 反例的关系的.

名词解释:

真正例(TP, True Positive): 样本值 => 正例, 预测值 => 正例

伪正例(FP, False Positive): 样本值 => 假例, 预测值 => 正例

伪反例(FN, False Negative): 样本值 => 正例, 预测值 => 假例

真反例(TN, True Negative): 样本值 => 假例, 预测值 => 假例

细节:

TP + FP + FN + TN = 样本总数

逻辑回归模型 评估:

方式1: 正确率(准确率)

计算规则: 预测的真实结果 / 样本总数

方式2: 精确率(Precision)

计算规则: tp / (tp + fp)

方式3: 召回率(Recall), 也叫: 查全率 => 预测出的正例 在所有正例中的 占比

计算规则: tp / (tp + fn)

方式4: F1-Score, 简称叫: F1值, 如果对于 精确率 和 召回率都有要求, 则可以直接计算F1值.

计算规则: 2 * 精确率 * 召回率 / (精确率 + 召回率)

方式5: AUC值(了解)

方式6: ROC曲线(了解)

"""

导包

import pandas as pd

from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score

1. 准备 样本集(10条), 6个 => 恶性肿瘤, 4个 => 良性肿瘤. 即: 训练集的标签.

y_train = ['恶性', '恶性', '恶性', '恶性', '恶性', '恶性', '良性', '良性', '良性', '良性']

2. 准备标签.

label = ['恶性', '良性']

dataframe_label = ['恶性(正例)', '良性(假例)']

3. 准备预测值, 即: 模型A => 预测对了3个恶性肿瘤, 预测对了4个良性肿瘤.

y_predict_A = ['恶性', '恶性', '恶性', '良性', '良性', '良性', '良性', '良性', '良性', '良性']

4. 准备预测值, 即: 模型B => 预测对了6个恶性肿瘤, 预测对了1个良性肿瘤.

y_predict_B = ['恶性', '恶性', '恶性', '恶性', '恶性', '恶性', '恶性', '恶性', '恶性', '良性']

5. 基于模型A, 构建: 混淆矩阵(confusion_matrix)

参1: 真实值, 参2: 预测值, 参3: 模型标签

confusion_matrix_A = confusion_matrix(y_train, y_predict_A, labels=label)

print(f'混淆矩阵A: \n {confusion_matrix_A}')

6. 把上述的混淆矩阵, 转成 DataFrame即可.

df_A = pd.DataFrame(confusion_matrix_A, index=dataframe_label, columns=dataframe_label)

print(f'DataFrame对象A: \n {df_A}')

7. 基于模型B, 构建: 混淆矩阵(confusion_matrix), 然后转成DF对象.

confusion_matrix_B = confusion_matrix(y_train, y_predict_B, labels=label)

print(f'混淆矩阵B: \n {confusion_matrix_B}')

把上述的混淆矩阵, 转成 DataFrame即可.

df_B = pd.DataFrame(confusion_matrix_B, index=dataframe_label, columns=dataframe_label)

print(f'DataFrame对象B: \n {df_B}')

8. 分别计算 模型A 和 模型B的 精确率

参1: 真实值, 参2: 预测值, 参3: 正例标签

print(f'模型A的精确率: {precision_score(y_train, y_predict_A, pos_label="恶性")}') # 1.0

print(f'模型B的精确率: {precision_score(y_train, y_predict_B, pos_label="恶性")}') # 0.6666666666666666

9. 分别计算 模型A 和 模型B的 召回率

print(f'模型A的召回率(查全率): {recall_score(y_train, y_predict_A, pos_label="恶性")}') # 1.0

print(f'模型B的召回率(查全率): {recall_score(y_train, y_predict_B, pos_label="恶性")}') # 0.6666666666666666

10. 分别计算 模型A 和 模型B的 F1值.

print(f'模型A的F1-Score(F1值): {f1_score(y_train, y_predict_A, pos_label="恶性")}') # 0.6666666666666666

print(f'模型B的F1-Score(F1值): {f1_score(y_train, y_predict_B, pos_label="恶性")}') # 0.8

相关推荐
夜幽青玄2 分钟前
mybatis-plus调用报 org.springframework.dao.DataIntegrityViolationException 错误处理
开发语言·python·mybatis
这里有鱼汤2 小时前
📊量化实战篇:如何计算RSI指标的“拥挤度指标”?
后端·python
JJJJ_iii2 小时前
【机器学习05】神经网络、模型表示、前向传播、TensorFlow实现
人工智能·pytorch·python·深度学习·神经网络·机器学习·tensorflow
William.csj2 小时前
服务器/Pytorch——对于只调用一次的函数初始化,放在for训练外面和里面的差异
人工智能·pytorch·python
Ingsuifon2 小时前
pytorch踩坑记录
人工智能·pytorch·python
smj2302_796826522 小时前
解决leetcode第3721题最长平衡子数组II
python·算法·leetcode
m0_626535202 小时前
力扣题目练习 换水问题
python·算法·leetcode
第六五2 小时前
DPC和DPC-KNN算法
人工智能·算法·机器学习
软件技术NINI2 小时前
MATLAB疑难诊疗:从调试到优化的全攻略
javascript·css·python·html
龙俊杰的读书笔记2 小时前
《小白学随机过程》第一章:随机过程——定义和形式 (附录1 探究随机变量)
人工智能·机器学习·概率论·随机过程和rl