python机器学习(02-混淆矩阵及精确率_召回率_F1值计算)

"""

案例:

演示 逻辑回归模型的 评估方式, 即: 精确率, 召回率, F1值.

混淆矩阵解释:

概述:

用来描述 真实值(样本值)中 正例, 反例 和 预测值的正例, 反例的关系的.

名词解释:

真正例(TP, True Positive): 样本值 => 正例, 预测值 => 正例

伪正例(FP, False Positive): 样本值 => 假例, 预测值 => 正例

伪反例(FN, False Negative): 样本值 => 正例, 预测值 => 假例

真反例(TN, True Negative): 样本值 => 假例, 预测值 => 假例

细节:

TP + FP + FN + TN = 样本总数

逻辑回归模型 评估:

方式1: 正确率(准确率)

计算规则: 预测的真实结果 / 样本总数

方式2: 精确率(Precision)

计算规则: tp / (tp + fp)

方式3: 召回率(Recall), 也叫: 查全率 => 预测出的正例 在所有正例中的 占比

计算规则: tp / (tp + fn)

方式4: F1-Score, 简称叫: F1值, 如果对于 精确率 和 召回率都有要求, 则可以直接计算F1值.

计算规则: 2 * 精确率 * 召回率 / (精确率 + 召回率)

方式5: AUC值(了解)

方式6: ROC曲线(了解)

"""

导包

import pandas as pd

from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score

1. 准备 样本集(10条), 6个 => 恶性肿瘤, 4个 => 良性肿瘤. 即: 训练集的标签.

y_train = ['恶性', '恶性', '恶性', '恶性', '恶性', '恶性', '良性', '良性', '良性', '良性']

2. 准备标签.

label = ['恶性', '良性']

dataframe_label = ['恶性(正例)', '良性(假例)']

3. 准备预测值, 即: 模型A => 预测对了3个恶性肿瘤, 预测对了4个良性肿瘤.

y_predict_A = ['恶性', '恶性', '恶性', '良性', '良性', '良性', '良性', '良性', '良性', '良性']

4. 准备预测值, 即: 模型B => 预测对了6个恶性肿瘤, 预测对了1个良性肿瘤.

y_predict_B = ['恶性', '恶性', '恶性', '恶性', '恶性', '恶性', '恶性', '恶性', '恶性', '良性']

5. 基于模型A, 构建: 混淆矩阵(confusion_matrix)

参1: 真实值, 参2: 预测值, 参3: 模型标签

confusion_matrix_A = confusion_matrix(y_train, y_predict_A, labels=label)

print(f'混淆矩阵A: \n {confusion_matrix_A}')

6. 把上述的混淆矩阵, 转成 DataFrame即可.

df_A = pd.DataFrame(confusion_matrix_A, index=dataframe_label, columns=dataframe_label)

print(f'DataFrame对象A: \n {df_A}')

7. 基于模型B, 构建: 混淆矩阵(confusion_matrix), 然后转成DF对象.

confusion_matrix_B = confusion_matrix(y_train, y_predict_B, labels=label)

print(f'混淆矩阵B: \n {confusion_matrix_B}')

把上述的混淆矩阵, 转成 DataFrame即可.

df_B = pd.DataFrame(confusion_matrix_B, index=dataframe_label, columns=dataframe_label)

print(f'DataFrame对象B: \n {df_B}')

8. 分别计算 模型A 和 模型B的 精确率

参1: 真实值, 参2: 预测值, 参3: 正例标签

print(f'模型A的精确率: {precision_score(y_train, y_predict_A, pos_label="恶性")}') # 1.0

print(f'模型B的精确率: {precision_score(y_train, y_predict_B, pos_label="恶性")}') # 0.6666666666666666

9. 分别计算 模型A 和 模型B的 召回率

print(f'模型A的召回率(查全率): {recall_score(y_train, y_predict_A, pos_label="恶性")}') # 1.0

print(f'模型B的召回率(查全率): {recall_score(y_train, y_predict_B, pos_label="恶性")}') # 0.6666666666666666

10. 分别计算 模型A 和 模型B的 F1值.

print(f'模型A的F1-Score(F1值): {f1_score(y_train, y_predict_A, pos_label="恶性")}') # 0.6666666666666666

print(f'模型B的F1-Score(F1值): {f1_score(y_train, y_predict_B, pos_label="恶性")}') # 0.8

相关推荐
海棠AI实验室8 分钟前
第四章 项目目录结构:src/、configs/、data/、tests/ 的黄金布局
python·项目目录结构
爱笑的眼睛111 小时前
超越可视化:降维算法组件的深度解析与工程实践
java·人工智能·python·ai
清铎2 小时前
leetcode_day12_滑动窗口_《绝境求生》
python·算法·leetcode·动态规划
ai_top_trends2 小时前
2026 年工作计划 PPT 横评:AI 自动生成的优劣分析
人工智能·python·powerpoint
TDengine (老段)2 小时前
TDengine Python 连接器进阶指南
大数据·数据库·python·物联网·时序数据库·tdengine·涛思数据
brent4232 小时前
DAY50复习日
开发语言·python
万行3 小时前
机器学习&第三章
人工智能·python·机器学习·数学建模·概率论
Data_agent3 小时前
Cocbuy 模式淘宝 / 1688 代购系统(欧美市场)搭建指南
开发语言·python
m0_726365833 小时前
哈希分分预测系统 打造自适应趋势分析「Python+DeepSeek+PyQt5」
python·qt·哈希算法
vyuvyucd3 小时前
Qwen-1.8B-Chat昇腾Atlas800TA2部署实战
python