opencv学习:人脸识别器特征提取BPHFaceRecognizer_create算法的使用

BPHFaceRecognizer_create算法

在OpenCV中,cv2.face.LBPHFaceRecognizer_create()函数用于创建一个局部二值模式直方图(Local Binary Patterns Histograms,简称LBPH)人脸识别器。LBPH是一种用于人脸识别的特征提取方法,它结合了局部二值模式(LBP)和直方图的概念,以生成一个对光照变化和遮挡具有一定鲁棒性的特征表示。

参数threshold=80是这个函数的一个可选参数,它指定了在人脸识别过程中使用的决策阈值。这个阈值用于确定一个预测是否足够可靠,即当预测的置信度高于这个阈值时,预测被认为是可靠的。置信度是一个介于0到100之间的值,表示识别器对其预测的信心水平。如果置信度低于阈值,预测可能被认为是不确定的。

下面是对cv2.face.LBPHFaceRecognizer_create(threshold=80)的详细解释:

  • cv2.face:这是OpenCV库中的一个模块,专门用于人脸识别任务。

  • LBPHFaceRecognizer_create:这是cv2.face模块中的一个函数,用于创建一个LBPH人脸识别器对象。

  • threshold=80:这是一个命名参数,用于设置置信度阈值。在这个例子中,阈值被设置为80,这意味着只有当预测的置信度高于80%时,预测才会被认为是可靠的。

创建LBPH人脸识别器后,你可以使用train方法来训练它,使用训练好的图像和对应的标签。训练完成后,你可以使用predict方法来预测新图像中的人脸属于哪个类别。

代码步骤

复制代码
使用灰度模式读取图像并添加到列表中,并创建一个标签列表,与图像列表对应(最好选取头像照片)
python 复制代码
import cv2  # 导入OpenCV库

# 初始化一个空列表来存储图像
images = []

# 使用灰度模式读取图像并添加到列表中
# cv2.IMREAD_GRAYSCALE 标志确保图像以灰度模式读取
images.append(cv2.imread('hg1.png', cv2.IMREAD_GRAYSCALE))
images.append(cv2.imread('hg2.png', cv2.IMREAD_GRAYSCALE))
images.append(cv2.imread('hjh1.png', cv2.IMREAD_GRAYSCALE))
images.append(cv2.imread('hjh2.png', cv2.IMREAD_GRAYSCALE))

# 创建一个标签列表,与图像列表对应
labels = [0, 0, 1, 1]

# 创建一个字典来映射标签到对应的类别名称
dic = {0: "hg", 1: "hjh", -1: 'error'}
复制代码
读取要预测的图像,同样使用灰度模式
python 复制代码
# 读取要预测的图像,同样使用灰度模式
predict_image = cv2.imread('hg.png', cv2.IMREAD_GRAYSCALE)
复制代码
创建一个LBPH人脸识别器对象,使用训练好的识别器预测要预测的图像的标签和置信度
python 复制代码
# 创建一个LBPH人脸识别器对象
recognizer = cv2.face.LBPHFaceRecognizer_create(threshold=80)

# 使用图像列表和标签列表训练识别器
recognizer.train(images, np.array(labels))

# 使用训练好的识别器预测要预测的图像的标签和置信度
label, confidence = recognizer.predict(predict_image)

# 打印预测结果和置信度
# 使用字典来获取对应的类别名称
print('这人是', dic[label])
print('置信度', confidence)

运行结果

完整代码

python 复制代码
import cv2  # 导入OpenCV库

# 初始化一个空列表来存储图像
images = []

# 使用灰度模式读取图像并添加到列表中
# cv2.IMREAD_GRAYSCALE 标志确保图像以灰度模式读取
images.append(cv2.imread('hg1.png', cv2.IMREAD_GRAYSCALE))
images.append(cv2.imread('hg2.png', cv2.IMREAD_GRAYSCALE))
images.append(cv2.imread('hjh1.png', cv2.IMREAD_GRAYSCALE))
images.append(cv2.imread('hjh2.png', cv2.IMREAD_GRAYSCALE))

# 创建一个标签列表,与图像列表对应
labels = [0, 0, 1, 1]

# 创建一个字典来映射标签到对应的类别名称
dic = {0: "hg", 1: "hjh", -1: 'error'}

# 读取要预测的图像,同样使用灰度模式
predict_image = cv2.imread('hg.png', cv2.IMREAD_GRAYSCALE)

# 创建一个LBPH人脸识别器对象
recognizer = cv2.face.LBPHFaceRecognizer_create(threshold=80)

# 使用图像列表和标签列表训练识别器
recognizer.train(images, np.array(labels))

# 使用训练好的识别器预测要预测的图像的标签和置信度
label, confidence = recognizer.predict(predict_image)

# 打印预测结果和置信度
# 使用字典来获取对应的类别名称
print('这人是', dic[label])
print('置信度', confidence)

局限性:

  1. 对光照变化敏感:Haar特征对人脸的光照条件非常敏感,光照的不均匀或变化可能导致检测失败。

  2. 遮挡问题:当人脸被遮挡,例如戴墨镜或口罩时,检测的准确性会受到影响。

  3. 姿态变化:对于侧脸或者姿态变化较大的人脸,检测效果可能不佳。

  4. 计算资源消耗:虽然级联分类器设计得相对高效,但在处理高分辨率图像或视频时,尤其是在实时应用中,可能需要较多的计算资源。

  5. 训练过程复杂:创建Haar级联分类器需要大量的正负样本进行训练,这个过程可能需要大量的计算资源和时间。

  6. 特征描述能力有限:Haar特征对复杂形状和纹理的描述能力有限,容易受到遮挡和噪声的影响。

  7. 参数调整困难detectMultiScale方法的性能受到多个参数的影响,如scaleFactorminNeighbors,这些参数需要根据具体应用场景进行调整,以达到最佳效果。

  8. 误检和漏检:在复杂场景中,如多人脸、相似背景等情况下,可能会出现误检或漏检的情况。

  9. 对图像质量要求较高:对于模糊或分辨率较低的图像,检测质量会下降。

相关推荐
吴佳浩5 小时前
大模型量化部署终极指南:让700亿参数的AI跑进你的显卡
人工智能·python·gpu
跨境卫士苏苏6 小时前
亚马逊AI广告革命:告别“猜心”,迎接“共创”时代
大数据·人工智能·算法·亚马逊·防关联
珠海西格电力6 小时前
零碳园区工业厂房光伏一体化(BIPV)基础规划
大数据·运维·人工智能·智慧城市·能源
呱呱巨基6 小时前
Linux 进程概念
linux·c++·笔记·学习
土星云SaturnCloud6 小时前
不止是替代:从机械风扇的可靠性困局,看服务器散热技术新范式
服务器·网络·人工智能·ai
小马爱打代码6 小时前
Spring AI:搭建自定义 MCP Server:获取 QQ 信息
java·人工智能·spring
你们补药再卷啦6 小时前
ai(三)环境资源管理
人工智能·语言模型·电脑
yong15858553437 小时前
2. Linux C++ muduo 库学习——原子变量操作头文件
linux·c++·学习
飞哥数智坊7 小时前
GLM-4.6V 初探:国产 AI 能边写边自己配图了
人工智能·chatglm (智谱)
杰克逊的日记7 小时前
大模型的原理是什么
人工智能·大模型·gpu·算力