nn.functional.softmax(X, dim=-1)

dim=-1表示在最后一个维度(大概率是一行)应用Softmax函数,将值标准化为概率分布。

实例

假设我们有一个张量X,形状为(2,3),内容如下:

复制代码
import torch  
import torch.nn.functional as F  

X = torch.tensor([[1.0, 2.0, 3.0],  
                  [1.0, 2.0, 3.0]])  

# 计算 Softmax  
softmax_result = F.softmax(X, dim=-1)  
print(softmax_result)

输出:

复制代码
tensor([[0.0900, 0.2447, 0.6652],  
        [0.0900, 0.2447, 0.6652]])

可以看到,每一行的输出值加起来为 1,这表示已经进行了Softmax操作。

相关推荐
木非哲39 分钟前
机器学习--随机森林--从一棵树的直觉到一片林的哲学
人工智能·随机森林·机器学习
程序员打怪兽1 小时前
详解YOLOv8网络结构
人工智能·深度学习
A尘埃2 小时前
保险公司车险理赔欺诈检测(随机森林)
算法·随机森林·机器学习
饭饭大王6662 小时前
CANN 生态中的轻量化部署利器:`lite-inference` 项目实战解析
深度学习
MSTcheng.3 小时前
CANN ops-math:AI 硬件端高效数学运算的算子设计与工程化落地方法
人工智能·深度学习·cann
Dev7z3 小时前
基于深度学习的肺部听诊音疾病智能诊断方法研究
人工智能·深度学习
工程师老罗3 小时前
基于Pytorch的YOLOv1 的网络结构代码
人工智能·pytorch·yolo
JarryStudy4 小时前
HCCL与PyTorch集成 hccl_comm.cpp DDP后端注册全流程
人工智能·pytorch·python·cann
像风一样的男人@4 小时前
python --读取psd文件
开发语言·python·深度学习
大江东去浪淘尽千古风流人物5 小时前
【SLAM新范式】几何主导=》几何+学习+语义+高效表示的融合
深度学习·算法·slam