nn.functional.softmax(X, dim=-1)

dim=-1表示在最后一个维度(大概率是一行)应用Softmax函数,将值标准化为概率分布。

实例

假设我们有一个张量X,形状为(2,3),内容如下:

复制代码
import torch  
import torch.nn.functional as F  

X = torch.tensor([[1.0, 2.0, 3.0],  
                  [1.0, 2.0, 3.0]])  

# 计算 Softmax  
softmax_result = F.softmax(X, dim=-1)  
print(softmax_result)

输出:

复制代码
tensor([[0.0900, 0.2447, 0.6652],  
        [0.0900, 0.2447, 0.6652]])

可以看到,每一行的输出值加起来为 1,这表示已经进行了Softmax操作。

相关推荐
阿豪Jeremy9 小时前
bert-base-chinese-ner微调总结——针对“领域实体微调”及“增量实体微调”任务
人工智能·深度学习·bert
lkbhua莱克瓦249 小时前
稠密、稀疏与MoE:大模型时代的三重架构革命
人工智能·深度学习·机器学习·ai·架构
liu****9 小时前
能源之星案例
人工智能·python·算法·机器学习·能源
摆烂咸鱼~9 小时前
机器学习(13-2)
人工智能·机器学习
大模型真好玩10 小时前
大模型训练全流程实战指南基础篇(二)——大模型文件结构解读与原理解析
人工智能·pytorch·langchain
qwerasda12385210 小时前
【深度学习】如何使用YOLO11-RevCol模型进行伤口类型识别与分类 擦伤、瘀伤、烧伤、切割伤以及正常状态检测_2
人工智能·深度学习·分类
cici1587410 小时前
计算四连杆机构的运动学
线性代数·算法·机器学习
cg501710 小时前
输入模型的训练数据需要变成什么样(基于bert模型)
人工智能·深度学习·bert
范男10 小时前
工业级变化检测 Baseline:基于 YOLO11 + 孪生网络(Siamese Network)的实战落地
人工智能·深度学习·目标检测·计算机视觉·paddlepaddle
棒棒的皮皮10 小时前
【深度学习】YOLO 模型核心部署格式全解析(PyTorch/ONNX/TensorRT/TFLite)
pytorch·深度学习·yolo·计算机视觉