nn.functional.softmax(X, dim=-1)

dim=-1表示在最后一个维度(大概率是一行)应用Softmax函数,将值标准化为概率分布。

实例

假设我们有一个张量X,形状为(2,3),内容如下:

复制代码
import torch  
import torch.nn.functional as F  

X = torch.tensor([[1.0, 2.0, 3.0],  
                  [1.0, 2.0, 3.0]])  

# 计算 Softmax  
softmax_result = F.softmax(X, dim=-1)  
print(softmax_result)

输出:

复制代码
tensor([[0.0900, 0.2447, 0.6652],  
        [0.0900, 0.2447, 0.6652]])

可以看到,每一行的输出值加起来为 1,这表示已经进行了Softmax操作。

相关推荐
koo36410 分钟前
pytorch深度学习笔记5
pytorch·笔记·深度学习
LUU_791 小时前
Day27 机器学习管道pipeline
人工智能·机器学习
严文文-Chris3 小时前
【半监督学习常见算法】
学习·算法·机器学习
Coding茶水间3 小时前
基于深度学习的35种鸟类检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
祝余Eleanor3 小时前
Day 29 类的定义及参数
人工智能·python·机器学习
ReinaXue3 小时前
跨模态预训练大模型【CLIP】:Contrastive Language–Image Pre-training
图像处理·人工智能·深度学习·计算机视觉·语言模型
福大大架构师每日一题3 小时前
PyTorch v2.9.1 发布:重要 Bug 修复与性能优化详解
人工智能·pytorch·bug
【建模先锋】4 小时前
高效对抗噪声!基于深度残差收缩网络(DRSN)的轴承故障诊断模型
网络·深度学习·信号处理·轴承故障诊断·降噪模型
smile_Iris4 小时前
Day 28 元组和OS模块
python·机器学习
All The Way North-4 小时前
PyTorch SmoothL1Loss 全面解析:数学定义、梯度推导、API 规范与 logits 误用纠正
pytorch·深度学习·机器学习·smooth l1损失函数·回归损失函数