nn.functional.softmax(X, dim=-1)

dim=-1表示在最后一个维度(大概率是一行)应用Softmax函数,将值标准化为概率分布。

实例

假设我们有一个张量X,形状为(2,3),内容如下:

复制代码
import torch  
import torch.nn.functional as F  

X = torch.tensor([[1.0, 2.0, 3.0],  
                  [1.0, 2.0, 3.0]])  

# 计算 Softmax  
softmax_result = F.softmax(X, dim=-1)  
print(softmax_result)

输出:

复制代码
tensor([[0.0900, 0.2447, 0.6652],  
        [0.0900, 0.2447, 0.6652]])

可以看到,每一行的输出值加起来为 1,这表示已经进行了Softmax操作。

相关推荐
.30-06Springfield7 小时前
人工智能概念之七:集成学习思想(Bagging、Boosting、Stacking)
人工智能·算法·机器学习·集成学习
shangyingying_18 小时前
关于小波降噪、小波增强、小波去雾的原理区分
人工智能·深度学习·计算机视觉
书玮嘎9 小时前
【WIP】【VLA&VLM——InternVL系列】
人工智能·深度学习
要努力啊啊啊10 小时前
YOLOv2 正负样本分配机制详解
人工智能·深度学习·yolo·计算机视觉·目标跟踪
小陈phd10 小时前
李宏毅机器学习笔记——梯度下降法
人工智能·python·机器学习
喝过期的拉菲10 小时前
如何使用 Pytorch Lightning 启用早停机制
pytorch·lightning·早停机制
kk爱闹10 小时前
【挑战14天学完python和pytorch】- day01
android·pytorch·python
Morpheon10 小时前
揭开预训练Pre-Training的力量:革新机器学习
人工智能·机器学习
勤奋的大熊猫11 小时前
机器学习中的 Agent 是什么?
人工智能·机器学习·agent
Blossom.11811 小时前
机器学习在智能建筑中的应用:能源管理与环境优化
人工智能·python·深度学习·神经网络·机器学习·机器人·sklearn