nn.functional.softmax(X, dim=-1)

dim=-1表示在最后一个维度(大概率是一行)应用Softmax函数,将值标准化为概率分布。

实例

假设我们有一个张量X,形状为(2,3),内容如下:

复制代码
import torch  
import torch.nn.functional as F  

X = torch.tensor([[1.0, 2.0, 3.0],  
                  [1.0, 2.0, 3.0]])  

# 计算 Softmax  
softmax_result = F.softmax(X, dim=-1)  
print(softmax_result)

输出:

复制代码
tensor([[0.0900, 0.2447, 0.6652],  
        [0.0900, 0.2447, 0.6652]])

可以看到,每一行的输出值加起来为 1,这表示已经进行了Softmax操作。

相关推荐
weixin_4640780712 分钟前
环境配置。
人工智能·深度学习
黑客思维者14 分钟前
机器学习012:监督学习【回归算法】(对比)-- AI预测世界的“瑞士军刀”
人工智能·学习·机器学习·回归·逻辑回归
*星星之火*16 分钟前
【大白话 AI 答疑】第9篇 深入浅出:sigmoid函数公式设计原理——为何是$e^{-x}$而非$e^x$
人工智能·机器学习
*星星之火*1 小时前
【大白话 AI 答疑】第8篇 BERT与传统机器学习(如贝叶斯)在文本分类中的区别及效果对比
人工智能·机器学习·bert
andwhataboutit?1 小时前
pytorch-CycleGAN-and-pix2pix学习
人工智能·pytorch·学习
渡我白衣1 小时前
计算机组成原理(7):定点数的编码表示
汇编·人工智能·嵌入式硬件·网络协议·机器学习·硬件工程
haiyu_y1 小时前
Day 45 预训练模型
人工智能·python·深度学习
Robot侠1 小时前
视觉语言导航从入门到精通(四)
人工智能·深度学习·transformer·rag·视觉语言导航·vln
拾贰_C1 小时前
【python | pytorch | 】.报错怎么找到问题所在?
开发语言·pytorch·python
科学最TOP1 小时前
xLSTM-Mixer:基于记忆混合的多变量时间序列预测
大数据·人工智能·算法·机器学习·时间序列