全球首款开源!多模态 MoE 模型 Aria:64K 超长上下文,图像视频文档全能处理,支持全参数微调!

❤️ 如果你也关注大模型与 AI 的发展现状,且对大模型应用开发非常感兴趣,我会快速跟你分享最新的感兴趣的 AI 应用和热点信息,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

微信订阅号|搜一搜:蚝油菜花

🚀 快速阅读

  1. Aria 是由 Rhymes AI 推出的全球首个开源多模态原生混合专家(MoE)模型,具备卓越的多模态理解能力。
  2. 拥有 64K tokens 的长上下文窗口,高效处理长视频和文档,同时在多模态任务上展现最佳性能。
  3. 提供 LoRA 和全参数微调,支持多种数据集类型,助力开发者快速上手和应用。

正文(附运行示例)

Aria 是什么

Aria 是由 Rhymes AI 团队开发的全球首个开源多模态原生混合专家(MoE)模型。它能理解和处理文本、代码、图像和视频等多种输入类型,在多模态和语言任务上表现出色,尤其擅长视频和文档理解。Aria 拥有长达 64K tokens 的多模态上下文窗口,每个 token 激活 3.9B 参数,实现快速推理和低微调成本,为开发者和研究者提供了强大的多模态 AI 工具。

Aria 的主要功能

  • 多模态理解:能同时处理和理解文本、代码、图像和视频等多种数据类型。
  • 高性能任务处理:在多模态任务、语言理解和编码任务中表现优异。
  • 长上下文处理能力:拥有 64K tokens 的长上下文窗口,有效处理长视频和长文档。
  • 开源可扩展性:模型权重和代码库开源,方便广泛采用和进一步开发。

如何运行 Aria

安装

首先,确保你已经安装了必要的依赖项:

bash 复制代码
pip install -e .
# 如果你想为项目贡献代码,可以安装开发依赖
pip install -e .[dev]

pip install flash-attn --no-build-isolation

推理

Aria 总共拥有 25.3B 参数,可以在一个 A100 (80GB) GPU 上以 bfloat16 精度加载。以下是一个使用 Hugging Face Transformers 进行推理的示例代码:

python 复制代码
import requests
import torch
from PIL import Image
from transformers import AutoModelForCausalLM, AutoProcessor

model_id_or_path = "rhymes-ai/Aria"

model = AutoModelForCausalLM.from_pretrained(model_id_or_path, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True)
processor = AutoProcessor.from_pretrained(model_id_or_path, trust_remote_code=True)

image_path = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png"
image = Image.open(requests.get(image_path, stream=True).raw)

messages = [
    {
        "role": "user",
        "content": [
            {"text": None, "type": "image"},
            {"text": "这是什么图片?", "type": "text"},
        ],
    }
]

text = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(text=text, images=image, return_tensors="pt")
inputs["pixel_values"] = inputs["pixel_values"].to(model.dtype)
inputs = {k: v.to(model.device) for k, v in inputs.items()}

with torch.inference_mode(), torch.cuda.amp.autocast(dtype=torch.bfloat16):
    output = model.generate(
        **inputs,
        max_new_tokens=500,
        stop_strings=["<|im_end|>"],
        tokenizer=processor.tokenizer,
        do_sample=True,
        temperature=0.9,
    )
    output_ids = output[0][inputs["input_ids"].shape[1]:]
    result = processor.decode(output_ids, skip_special_tokens=True)

print(result)

微调

Aria 支持 LoRA 微调和全参数微调,以下是一个使用 LoRA 微调的示例步骤:

  1. 准备数据集 :参考custom_dataset.md准备你的数据集。

  2. 配置文件 :打开recipes/config_lora.yaml,更新dataset_mixer部分为你的数据集路径:

    yaml 复制代码
    dataset_mixer:
      "path/to/dataset1": 1
      "path/to/dataset2": 0.5
      "path/to/dataset3": 2
  3. 开始微调 :在 A100 (80GB)或 H100 (80GB) GPU 上运行以下命令:

    bash 复制代码
    python aria/train.py --config recipes/config_lora.yaml
  4. 多 GPU 训练 :使用accelerate库进行多 GPU 训练:

    bash 复制代码
    accelerate launch --config_file recipes/accelerate_configs/zero2.yaml aria/train.py --config recipes/config_lora.yaml --num_processes [number_of_gpus]

资源


❤️ 如果你也关注大模型与 AI 的发展现状,且对大模型应用开发非常感兴趣,我会快速跟你分享最新的感兴趣的 AI 应用和热点信息,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

微信订阅号|搜一搜:蚝油菜花

相关推荐
i.ajls10 分钟前
强化学习入门-2(Dueling DQN)
人工智能·机器学习·强化学习·dqn
Dev7z14 分钟前
深度学习与舌诊的结合:人工智能助力中医诊断新时代
人工智能·深度学习
凯禾瑞华养老实训室18 分钟前
智慧养老实训室建设指南:厂家的产品选型与应用建议
大数据·人工智能·ar·vr·虚拟仿真·智慧健康养老服务与管理
智泊AI30 分钟前
一文讲清:AI大模型的底层原理是什么?
llm
IT_陈寒31 分钟前
Python性能翻倍的5个冷门技巧:从GIL逃逸到内存视图的实战优化指南
前端·人工智能·后端
德昂信息dataondemand35 分钟前
开好经营月会:如何把数据变成决策的利器?
大数据·人工智能·abi·经营月会
AI大模型40 分钟前
美亚 4.6 星评,从零到生产:高分神书《AI Engineering》带你解锁大模型应用开发!
程序员·llm·agent
newxtc1 小时前
【 广州产权交易所-注册安全分析报告-无验证方式导致安全隐患】
开发语言·人工智能·selenium·安全·yolo
AIzealot无1 小时前
Qwen3 Embedding报告随笔
人工智能·深度学习·算法·论文·embedding·论文笔记·搜广推
渡我白衣1 小时前
《深度学习进阶(四)——多模态智能:语言、视觉与语音的融合》
人工智能·深度学习