使用Dlib库实现人脸检测和关键点定位

目录

前言

一、安装Dlib库

二、人脸检测

三、人脸关键点定位


前言

Dlib是一个现代化的 C++ 工具包,提供了一些机器学习算法和工具,特别是在面部识别和人脸关键点检测方面非常流行。它具有易于使用的 Python 接口,并被广泛应用于计算机视觉项目中。

一、安装Dlib库

  1. 在这里提供了几个python版本的dlib库文件
  2. 下载dlib库的安装包,
  3. 在安装包所在文件夹输入cmd进入命令提示符
  4. 使用pip进行安装

Dlib库安装文件

二、人脸检测

  1. 使用dlib.get_frontal_face_detector() 创建人脸检测器
  2. 导入图片,传入检测器,返回检测到的所有人脸框
  3. 遍历每个人脸框,获取四个边的坐标,拼成左上角和右下角坐标
  4. 然后画出每个人脸的矩形框
python 复制代码
import cv2
import dlib

detector = dlib.get_frontal_face_detector()  # 创建人脸检测器
img = cv2.imread('quanjiafu1.jpg')
img = cv2.resize(img, None, fx=0.3, fy=0.3)

faces = detector(img, 2)
# faces = detector(image,n)使用人脸检测器返回检测到的人脸
# 参数:image:待检测的可能含有人脸的图像。
# 参数n:表示采用上采样的次数。上采样会让图像变大,能够检测到更多人脸对象,提高小人脸的检测效果#通常建议将此参数设置为0 或1。较大的值会增加检测的准确性,但会降低处理速度。
# 返回值faces:返回检测图像中的所有人脸。

for face in faces:  # 对每个人脸框进行逐个处理
    x1 = face.left()
    y1 = face.top()
    x2 = face.right()
    y2 = face.bottom()

    cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.imshow('result', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出:

三、人脸关键点定位

  1. 下载人脸68个关键点的模型 人脸68关键点定位模型
  2. 使用dlib.shape_predictor()载入模型
  3. 使用模型检测人脸的关键点
  4. 使用.parts()属性获取关键点的x,y的坐标
  5. 然后在图片上画出关键点,并写出关键点的序号
python 复制代码
import cv2
import dlib
import numpy as np

img = cv2.imread('xzq.png')
img = cv2.resize(img, None, fx=1.3, fy=1.3)

detector = dlib.get_frontal_face_detector()  # 构造人脸检测器
faces = detector(img, 0)  # 检测人脸
print(faces)  # 人脸轮廓矩形的四个顶点
# dlib.shape_predictor 载入模型
predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat')

for face in faces:
    shape = predictor(img, face)  # 获取关键点
    landmarks = np.array([[p.x, p.y] for p in shape.parts()])  # 将关键点转换成坐标形式
    for idx, point in enumerate(landmarks):  # 绘制每一张脸的关键点
        pos = [point[0], point[1]]
        cv2.circle(img, pos, 2, color=(0, 255, 0), thickness=- 1)  # 给关键点标出来

        cv2.putText(img, str(idx), pos, cv2.FONT_HERSHEY_SIMPLEX, 0.4, (255, 255, 255), 1, cv2.LINE_AA)  # 给关键点标上序号

cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出:

相关推荐
杰说新技术5 分钟前
Meta AI最新推出的长视频语言理解多模态模型LongVU分享
人工智能·aigc
说私域8 分钟前
基于开源 AI 智能名片、S2B2C 商城小程序的用户获取成本优化分析
人工智能·小程序
东胜物联28 分钟前
探寻5G工业网关市场,5G工业网关品牌解析
人工智能·嵌入式硬件·5g
cuisidong199729 分钟前
5G学习笔记三之物理层、数据链路层、RRC层协议
笔记·学习·5g
乌恩大侠31 分钟前
5G周边知识笔记
笔记·5g
皓74139 分钟前
服饰电商行业知识管理的创新实践与知识中台的重要性
大数据·人工智能·科技·数据分析·零售
985小水博一枚呀1 小时前
【深度学习滑坡制图|论文解读3】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法
人工智能·深度学习·神经网络·cnn·transformer
AltmanChan1 小时前
大语言模型安全威胁
人工智能·安全·语言模型
985小水博一枚呀1 小时前
【深度学习滑坡制图|论文解读2】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法
人工智能·深度学习·神经网络·cnn·transformer·迁移学习
数据与后端架构提升之路2 小时前
从神经元到神经网络:深度学习的进化之旅
人工智能·神经网络·学习