深度学习的程序实例

以下是一个使用深度学习的程序实例:

python 复制代码
import tensorflow as tf
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout
from tensorflow.keras.optimizers import RMSprop

# 加载MNIST数据集
(x_train, y_train), (x_test, y_test) = mnist.load_data()

# 数据预处理
x_train = x_train.reshape(60000, 784)
x_test = x_test.reshape(10000, 784)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255

# 类别标签进行One-Hot编码
y_train = tf.keras.utils.to_categorical(y_train, 10)
y_test = tf.keras.utils.to_categorical(y_test, 10)

# 构建深度学习模型
model = Sequential()
model.add(Dense(512, activation='relu', input_shape=(784,)))
model.add(Dropout(0.2))
model.add(Dense(10, activation='softmax'))

# 编译模型
model.compile(loss='categorical_crossentropy',
              optimizer=RMSprop(),
              metrics=['accuracy'])

# 训练模型
batch_size = 128
epochs = 10
history = model.fit(x_train, y_train,
                    batch_size=batch_size,
                    epochs=epochs,
                    verbose=1,
                    validation_data=(x_test, y_test))

# 评估模型
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])

上述代码是一个简单的手写数字识别程序,使用了深度学习模型进行训练和预测。首先,通过mnist.load_data()函数加载了MNIST数据集,数据集包含了手写数字的图像和对应的标签。

然后,对数据进行预处理,包括将图像数据转换为浮点数并归一化,以及对标签进行One-Hot编码。

接下来,使用Sequential()创建了一个序列模型,并添加了两个全连接层和一个Dropout层。模型通过RMSprop优化器和交叉熵损失函数进行编译。

然后,使用fit()函数训练模型,并将训练数据和测试数据作为输入。训练过程中,可以指定批次大小、训练轮数等参数。

最后,使用evaluate()函数评估模型在测试数据上的性能,并打印出损失值和准确率。

这个程序使用深度学习模型对手写数字图像进行分类,可以实现较高的准确率。

相关推荐
背心2块钱包邮2 小时前
第7节——积分技巧(Integration Techniques)-代换积分法
人工智能·python·深度学习·matplotlib
PixelMind2 小时前
【超分辨率专题】FlashVSR:单步Diffusion的再次提速,实时视频超分不是梦!
深度学习·音视频·超分辨率·vsr
噜~噜~噜~3 小时前
偏导数和全导数的个人理解
深度学习·偏导数·梯度·全导数
lx7416026983 小时前
change-detection关于llm方向的任务与优化
深度学习
xier_ran4 小时前
关键词解释:对比学习(Contrastive Learning)
人工智能·深度学习·学习·机器学习·对比学习
andwhataboutit?4 小时前
GAN学习
深度学习·学习·生成对抗网络
ziwu4 小时前
【岩石种类识别系统】Python+TensorFlow+Django+人工智能+深度学习+卷积神经网络算法
人工智能·深度学习·图像识别
AI即插即用4 小时前
即插即用系列 | CVPR SwiftFormer:移动端推理新王者!0.8ms 延迟下 ImageNet 78.5% 准确率,吊打 MobileViT
图像处理·人工智能·深度学习·目标检测·计算机视觉·cnn·视觉检测
ziwu5 小时前
【中草药识别系统】Python+TensorFlow+Django+人工智能+深度学习+卷积神经网络算法
人工智能·深度学习·图像识别
Coding茶水间5 小时前
基于深度学习的苹果病害检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉