深度学习的程序实例

以下是一个使用深度学习的程序实例:

python 复制代码
import tensorflow as tf
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout
from tensorflow.keras.optimizers import RMSprop

# 加载MNIST数据集
(x_train, y_train), (x_test, y_test) = mnist.load_data()

# 数据预处理
x_train = x_train.reshape(60000, 784)
x_test = x_test.reshape(10000, 784)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255

# 类别标签进行One-Hot编码
y_train = tf.keras.utils.to_categorical(y_train, 10)
y_test = tf.keras.utils.to_categorical(y_test, 10)

# 构建深度学习模型
model = Sequential()
model.add(Dense(512, activation='relu', input_shape=(784,)))
model.add(Dropout(0.2))
model.add(Dense(10, activation='softmax'))

# 编译模型
model.compile(loss='categorical_crossentropy',
              optimizer=RMSprop(),
              metrics=['accuracy'])

# 训练模型
batch_size = 128
epochs = 10
history = model.fit(x_train, y_train,
                    batch_size=batch_size,
                    epochs=epochs,
                    verbose=1,
                    validation_data=(x_test, y_test))

# 评估模型
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])

上述代码是一个简单的手写数字识别程序,使用了深度学习模型进行训练和预测。首先,通过mnist.load_data()函数加载了MNIST数据集,数据集包含了手写数字的图像和对应的标签。

然后,对数据进行预处理,包括将图像数据转换为浮点数并归一化,以及对标签进行One-Hot编码。

接下来,使用Sequential()创建了一个序列模型,并添加了两个全连接层和一个Dropout层。模型通过RMSprop优化器和交叉熵损失函数进行编译。

然后,使用fit()函数训练模型,并将训练数据和测试数据作为输入。训练过程中,可以指定批次大小、训练轮数等参数。

最后,使用evaluate()函数评估模型在测试数据上的性能,并打印出损失值和准确率。

这个程序使用深度学习模型对手写数字图像进行分类,可以实现较高的准确率。

相关推荐
捕风捉你13 小时前
【AI转行04】特征工程:治疗 AI 的“学不会”和“想太多”
人工智能·深度学习·机器学习
lixzest13 小时前
C++上位机软件开发入门深度学习
开发语言·c++·深度学习
AI模块工坊13 小时前
【AAAI 2026】即插即用 Spikingformer 重构残差连接,打造高效脉冲 Transformer
深度学习·重构·transformer
棒棒的皮皮14 小时前
【深度学习】YOLO模型评估之指标、可视化曲线分析
人工智能·深度学习·yolo·计算机视觉
guoketg16 小时前
BERT的技术细节和面试问题汇总
人工智能·深度学习·bert
MF_AI16 小时前
大型烟雾火灾检测识别数据集:25w+图像,2类,yolo标注
图像处理·人工智能·深度学习·yolo·计算机视觉
高洁0116 小时前
10分钟了解向量数据库(3
人工智能·深度学习·机器学习·transformer·知识图谱
MistaCloud17 小时前
Pytorch深入浅出(十三)之模型微调
人工智能·pytorch·python·深度学习
CoovallyAIHub17 小时前
超越Sora的开源思路:如何用预训练组件高效训练你的视频扩散模型?(附训练代码)
深度学习·算法·计算机视觉
小途软件18 小时前
基于深度学习的驾驶人情绪识别
java·人工智能·pytorch·python·深度学习·语言模型