深度学习的程序实例

以下是一个使用深度学习的程序实例:

python 复制代码
import tensorflow as tf
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout
from tensorflow.keras.optimizers import RMSprop

# 加载MNIST数据集
(x_train, y_train), (x_test, y_test) = mnist.load_data()

# 数据预处理
x_train = x_train.reshape(60000, 784)
x_test = x_test.reshape(10000, 784)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255

# 类别标签进行One-Hot编码
y_train = tf.keras.utils.to_categorical(y_train, 10)
y_test = tf.keras.utils.to_categorical(y_test, 10)

# 构建深度学习模型
model = Sequential()
model.add(Dense(512, activation='relu', input_shape=(784,)))
model.add(Dropout(0.2))
model.add(Dense(10, activation='softmax'))

# 编译模型
model.compile(loss='categorical_crossentropy',
              optimizer=RMSprop(),
              metrics=['accuracy'])

# 训练模型
batch_size = 128
epochs = 10
history = model.fit(x_train, y_train,
                    batch_size=batch_size,
                    epochs=epochs,
                    verbose=1,
                    validation_data=(x_test, y_test))

# 评估模型
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])

上述代码是一个简单的手写数字识别程序,使用了深度学习模型进行训练和预测。首先,通过mnist.load_data()函数加载了MNIST数据集,数据集包含了手写数字的图像和对应的标签。

然后,对数据进行预处理,包括将图像数据转换为浮点数并归一化,以及对标签进行One-Hot编码。

接下来,使用Sequential()创建了一个序列模型,并添加了两个全连接层和一个Dropout层。模型通过RMSprop优化器和交叉熵损失函数进行编译。

然后,使用fit()函数训练模型,并将训练数据和测试数据作为输入。训练过程中,可以指定批次大小、训练轮数等参数。

最后,使用evaluate()函数评估模型在测试数据上的性能,并打印出损失值和准确率。

这个程序使用深度学习模型对手写数字图像进行分类,可以实现较高的准确率。

相关推荐
Jackilina_Stone3 小时前
【DL】浅谈深度学习中的知识蒸馏 | 输出层知识蒸馏
人工智能·深度学习·机器学习·蒸馏
代码猪猪傻瓜coding5 小时前
关于 形状信息提取的说明
人工智能·python·深度学习
Kai HVZ6 小时前
《深度学习》——自然语言处理(NLP)
人工智能·深度学习·自然语言处理
C#Thread6 小时前
机器视觉--索贝尔滤波
人工智能·深度学习·计算机视觉
Zhouqi_Hua8 小时前
LLM论文笔记 12: Teaching Arithmetic to Small Transformers
论文阅读·人工智能·深度学习·神经网络·语言模型
wyg_0311138 小时前
用deepseek学大模型08-循环神经网络
人工智能·rnn·深度学习
Dymc8 小时前
【深度学习在图像配准中的应用与挑战】
人工智能·深度学习·图像配准
E_Magic_Cube8 小时前
AI工具篇:利用DeepSeek+Kimi 辅助生成综述汇报PPT
人工智能·深度学习·效率·ai工具·deepseek
North_D9 小时前
ML.NET库学习008:使用ML.NET进行心脏疾病预测模型开发
人工智能·深度学习·神经网络·目标检测·机器学习·自然语言处理·数据挖掘
空空转念9 小时前
目前(2025年2月)计算机视觉(CV)领域一些表现优异的深度学习模型
人工智能·深度学习·计算机视觉