深度学习的程序实例

以下是一个使用深度学习的程序实例:

python 复制代码
import tensorflow as tf
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout
from tensorflow.keras.optimizers import RMSprop

# 加载MNIST数据集
(x_train, y_train), (x_test, y_test) = mnist.load_data()

# 数据预处理
x_train = x_train.reshape(60000, 784)
x_test = x_test.reshape(10000, 784)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255

# 类别标签进行One-Hot编码
y_train = tf.keras.utils.to_categorical(y_train, 10)
y_test = tf.keras.utils.to_categorical(y_test, 10)

# 构建深度学习模型
model = Sequential()
model.add(Dense(512, activation='relu', input_shape=(784,)))
model.add(Dropout(0.2))
model.add(Dense(10, activation='softmax'))

# 编译模型
model.compile(loss='categorical_crossentropy',
              optimizer=RMSprop(),
              metrics=['accuracy'])

# 训练模型
batch_size = 128
epochs = 10
history = model.fit(x_train, y_train,
                    batch_size=batch_size,
                    epochs=epochs,
                    verbose=1,
                    validation_data=(x_test, y_test))

# 评估模型
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])

上述代码是一个简单的手写数字识别程序,使用了深度学习模型进行训练和预测。首先,通过mnist.load_data()函数加载了MNIST数据集,数据集包含了手写数字的图像和对应的标签。

然后,对数据进行预处理,包括将图像数据转换为浮点数并归一化,以及对标签进行One-Hot编码。

接下来,使用Sequential()创建了一个序列模型,并添加了两个全连接层和一个Dropout层。模型通过RMSprop优化器和交叉熵损失函数进行编译。

然后,使用fit()函数训练模型,并将训练数据和测试数据作为输入。训练过程中,可以指定批次大小、训练轮数等参数。

最后,使用evaluate()函数评估模型在测试数据上的性能,并打印出损失值和准确率。

这个程序使用深度学习模型对手写数字图像进行分类,可以实现较高的准确率。

相关推荐
归去_来兮3 小时前
深度学习模型在C++平台的部署
c++·深度学习·模型部署
Danceful_YJ6 小时前
4.权重衰减(weight decay)
python·深度学习·机器学习
我爱一条柴ya13 小时前
【AI大模型】神经网络反向传播:核心原理与完整实现
人工智能·深度学习·神经网络·ai·ai编程
慕婉030713 小时前
深度学习概述
人工智能·深度学习
198913 小时前
【零基础学AI】第30讲:生成对抗网络(GAN)实战 - 手写数字生成
人工智能·python·深度学习·神经网络·机器学习·生成对抗网络·近邻算法
神经星星13 小时前
新加坡国立大学基于多维度EHR数据实现细粒度患者队列建模,住院时间预测准确率提升16.3%
人工智能·深度学习·机器学习
TY-202513 小时前
深度学习——神经网络1
人工智能·深度学习·神经网络
cver12315 小时前
CSGO 训练数据集介绍-2,427 张图片 AI 游戏助手 游戏数据分析
人工智能·深度学习·yolo·目标检测·游戏·计算机视觉
FreeBuf_15 小时前
新型BERT勒索软件肆虐:多线程攻击同时针对Windows、Linux及ESXi系统
人工智能·深度学习·bert
强哥之神15 小时前
Meta AI 推出 Multi - SpatialMLLM:借助多模态大语言模型实现多帧空间理解
人工智能·深度学习·计算机视觉·语言模型·自然语言处理·llama