Hadoop生态圈三大组件:HDFS的读写流程、MapReduce计算流程、Yarn资源调度

文章目录

  • [1. HDFS的读写流程](#1. HDFS的读写流程)
    • [1.1 HDFS读流程](#1.1 HDFS读流程)
    • [1.2 HDFS写流程](#1.2 HDFS写流程)
  • [2. MapReduce计算流程](#2. MapReduce计算流程)
  • [3. Yarn资源调度](#3. Yarn资源调度)

1. HDFS的读写流程

1.1 HDFS读流程

  • 客户端首先向Namenode发送读取请求,询问要读取的文件存储在哪些数据节点上。
  • Namenode会根据机架感知原理、网络拓扑关系、副本机制等返回部分或者全部的block所在的Datanode的地址。
  • 客户端根据Namenode返回的地址,选择一个距离最近的Datanode节点来读取第一个数据块。客户端直接与该数据节点建立连接,并发送读取请求。
  • Datanode接收到读取请求后,开始从磁盘上读取相应的数据块,并将数据通过网络传输给客户端。
  • 客户端在接收数据的同时,会对数据进行校验,以确保数据的完整性。如果发现数据损坏,客户端可以向其他包含该数据块副本的数据节点请求重新读取。
  • 当客户端读取完一个Datanode后,会根据Namenode提供的块位置信息,选择下一个数据节点来读取下一个数据块。重复上述步骤,直到客户端读取完整个文件。

1.2 HDFS写流程

  • 客户端向Namenode发送写入请求。
  • Namenode接收到写入请求后,首先判断当前这个操作的用户是否具有写入权限,如果不具备写入权限会直接报错;如果有写入权限,再进行判断在写入的目录下是否存在这个文件;如果要写入的目录下已经存在这个文件,会直接报错;如果要写入的目录下不存在这个文件,通知客户端可以写入。
  • 客户端对文件进行切分操作,形成block块。
  • 客户端请求第一个block块存储在哪些地方。
  • Namenode根据机架感知原理、拓扑关系、副本机制等,找到相应的可以上传的Datanode的连接列表,返回给客户端。
  • 客户端从接受的Datanode列表中选择第一台建立连接,当连接第一台Datanode以后,让第一台Datanode与第二台Datanode连接,然后第二台Datanode与第三台Datanode连接形成一条pipeline(管道)。
  • 客户端通过数据包的形式发送数据。当第一台Datanode接收到数据后,将数据发送给第二台Datanode,第二台接收完,再将数据发送给第三台。当最后一个Datanode接受请求后建立一个反向的应答队列。当每个节点都将数据包接收到以后,反向给予应答响应(ack确认机制)。

2. MapReduce计算流程


MR天龙八部

3. Yarn资源调度


YARN(Yet Another Resource Negotiator)是Hadoop的资源管理系统,其资源调度机制如下:

一、客户端请求资源

  1. 提交任务请求
    • 客户端首先将任务提交给Resource Manager。

二、Resource Manager处理请求

  1. 接收任务请求
    • Resource Manager接收到客户端的任务请求。
  2. 选择Node Manager
    • Resource Manager在Node Manager上寻找一个比较空闲的节点。
    • 通知并启动一个Application Master,将任务信息发送给Application Master,等待Application Master启动成功。
    • 如果启动失败,认为当前任务直接报错,告知任务无法执行。
  3. 获取任务相关信息
    • Application Master启动后,开始和主节点保持心跳机制,获取任务相关的信息(如JAR包路径、主类、参数)。

三、任务资源计算与申请

  1. 计算任务数量
    • 根据任务信息,计算共需要多少Map Task和多少Reduce Task。
  2. 发送资源请求
    • 通过心跳包,将任务计算的结果资源需求发送给主节点,进行资源的申请。

四、Resource Manager分配资源

  1. 资源分配工作
    • 根据收到的资源申请的结果信息,进行资源的分配工作。
    • 如果资源比较宽松,一次性将所需的所有资源一并全返回。
    • 如果资源比较紧张,最起码应该返回所有Map Task所需资源。

五、Node Manager执行任务

  1. 获取资源信息
    • Application Master通过心跳包,一直询问是否已经准备好资源,一旦准备好,将资源信息全部获取。
  2. 通知Node Manager
    • 根据获取的资源信息,通知各个Node Manager,启动相关的程序(先启动Map Task),告知Node Manager任务信息(如JAR包路径、主类、参数)。

六、任务执行与监控

  1. 执行任务进度监控
    • 每一个运行的container定时和Application Master汇总执行任务执行的进度。
    • 并且还基于Node Manager和Resource Manager的使用情况,报告资源的使用情况。
    • 如果初始化的时候,只是返回Map Task运行的资源。
    • 当Map Task执行完成后,或者执行过程中,Application Master向Resource Manager/Node Manager询问Reduce Task的资源是否已经准备好了,如果准备好了,就进行Reduce任务。
  2. 任务完成报告
    • 当整个Map Task和Reduce Task都运行完成后,通知Application Master已经完成执行任务了。
  3. 资源回收
    • Resource Manager收回所有分配的资源,然后通知Application Master可以执行自毁程序了。

这种资源调度机制确保了在YARN集群中,任务能够高效地获取和利用资源,同时也保证了资源的合理分配和管理。

相关推荐
宅小海1 小时前
scala String
大数据·开发语言·scala
小白的白是白痴的白1 小时前
11.17 Scala练习:梦想清单管理
大数据
java1234_小锋1 小时前
Elasticsearch是如何实现Master选举的?
大数据·elasticsearch·搜索引擎
JessieZeng aaa4 小时前
CSV文件数据导入hive
数据仓库·hive·hadoop
Java 第一深情5 小时前
零基础入门Flink,掌握基本使用方法
大数据·flink·实时计算
MXsoft6185 小时前
华为服务器(iBMC)硬件监控指标解读
大数据·运维·数据库
PersistJiao6 小时前
Spark 分布式计算中网络传输和序列化的关系(二)
大数据·网络·spark·序列化·分布式计算
九河云6 小时前
如何对AWS进行节省
大数据·云计算·aws
FreeIPCC7 小时前
谈一下开源生态对 AI人工智能大模型的促进作用
大数据·人工智能·机器人·开源
梦幻通灵7 小时前
ES分词环境实战
大数据·elasticsearch·搜索引擎