llama大模型中,为什么推理部分使用kv cache,而训练部分不使用kv cache

在 LLaMA 等大语言模型中,推理和训练过程在使用 KV (Key-Value) Cache 上存在差异的主要原因可以归结为计算效率和内存使用的不同需求。

1. KV Cache 在推理中的作用

  • 在推理阶段,模型通常是逐步生成输出(如一个词或一个标记 token 一次),因此每次只需要处理新输入的 token,同时需要记住前面已经生成的内容。
  • 如果不使用 KV Cache,每一步推理都需要重复计算所有已经生成的 token 对应的注意力(Attention),导致冗余计算,尤其在长序列推理中,计算量会随着序列长度呈现二次增长。

KV Cache 的关键点:

  • 缓存查询历史: 在推理过程中,将前一步生成的 key 和 value 存储起来,供后续步骤使用。
  • 加速推理: KV Cache 避免了重复计算前面的注意力部分。新输入的 token 只需要与之前缓存的 key 和 value 交互,这样计算复杂度从 O(n^2) 降低到 O(n)。

因此,推理过程中使用 KV Cache 显著减少了计算量,提高了响应速度,尤其对于长文本生成任务来说尤为重要。


2. 训练阶段不使用 KV Cache 的原因

  • 在训练过程中,模型会基于完整的输入序列进行前向传播和反向传播,并计算整个序列的损失函数。因此,所有 token 的注意力计算是并行执行的
  • 由于训练时是批量处理的,不像推理阶段那样逐步生成,每一步都需要所有 token 的上下文信息,所以不需要对每个 token 逐步累积缓存。
  • 并行计算优势: 训练过程中使用 GPU 或 TPU 的矩阵并行计算能力处理完整序列(例如使用多头自注意力机制),而使用 KV Cache 反而会降低训练效率,因为它会增加维护和访问缓存的开销。

3. 总结:推理与训练中 KV Cache 的差异

  • 推理阶段:逐步生成,需要缓存前面步骤的计算结果,以减少计算量和提高响应速度。
  • 训练阶段:全序列并行处理,所有 token 的计算一起完成,使用 KV Cache 反而会降低效率,没有必要缓存中间结果。

**推理:**逐步生成 + 减少计算重复 ------ 使用 KV Cache

**训练:**全序列并行计算 + 高效利用硬件 ------ 不使用 KV Cache

这种设计使得训练和推理阶段分别优化了不同的性能需求,从而提高了模型在两个场景中的整体效率。

相关推荐
风筝超冷1 天前
LLaMA-Factory - 批量推理(inference)的脚本
llama
bluebonnet273 天前
【agent开发】部署LLM(一)
python·llama
阿牛大牛中3 天前
LLaDa——基于 Diffusion 的大语言模型 打平 LLama 3
人工智能·语言模型·llama
Lilith的AI学习日记4 天前
【AI面试秘籍】| 第25期:RAG的关键痛点及解决方案深度解析
人工智能·深度学习·机器学习·chatgpt·aigc·llama
LChuck6 天前
【大模型微调】魔搭社区GPU进行LLaMA-Factory微调大模型自我认知
人工智能·语言模型·自然语言处理·nlp·llama·魔搭社区·modelscope
燕双嘤6 天前
Fine-tuning:微调技术,训练方式,LLaMA-Factory,ms-swift
llama
装不满的克莱因瓶9 天前
【小白AI教程】大模型知识扫盲通识
人工智能·数学建模·ai·大模型·llm·llama·rag
TGITCIC11 天前
英伟达破局1000 Token/秒!Llama 4以光速重塑AI推理边界
人工智能·大模型·llama·英伟达·大模型速度·ai赛道·大模型基座
天天爱吃肉821812 天前
【 大模型技术驱动智能网联汽车革命:关键技术解析与未来趋势】
语言模型·汽车·llama
Lilith的AI学习日记15 天前
【AI面试秘籍】| 第17期:MoE并行策略面试全攻略:从理论到调参的降维打击指南
人工智能·python·面试·职场和发展·llama