24/10/12 算法笔记 比特分层

比特平面分层可以用于图像增强、图像压缩和图像分析等。

比特分层:对于一幅8比特的灰度图像,每个像素点的像素值可以用8位二进制数表示,通常在0到255的范围内。比特平面分层是将这些8位二进制数拆分成8个独立的平面,每个平面对应于一个特定的二进制位。每个位平面只包含了图像中对应像素的该位的信息,其他位都被设置为0。

一种方法是将各个位的像素值分别除128,64,32......2,1,另一种用像素值与各比特面的值 2n(其中 n为比特面编号)进行位与操作,判断该像素值在该比特面是否存在即该比特位是否为1。如果存在,则进行二值化,给该像素值所在位赋值为255,突出显示该比特;否则赋值0。

下面是代码:

复制代码
import cv2
import numpy as np
import matplotlib.pyplot as plt

# 更改为需要的图片路径
img = cv2.imread('path_to_image.jpg', 0)
h, w = img.shape[0],img.shape[1]

#处理过程
new_img = np.zeros((h, w), 8)#跟源图像一样大小的图像,八位,先用0来填充
for y in range(h):
     for x in range(w):
#对每个图像像素进行循环,img[i , j]是每次遍历得到的每个像素,像素值
       n = str(np.binary_repr(img[i,j],8))
for k in range(8):
new_img[i , j ,k] = n[ k ] 
#依次显示
for i in range(8):
    cv2.imshow("image', new_i
相关推荐
风123456789~11 分钟前
【健康管理】健康管理师-考试范围
笔记·健康管理
AI即插即用16 分钟前
即插即用涨点系列(十四)2025 SOTA | Efficient ViM:基于“隐状态混合SSD”与“多阶段融合”的轻量级视觉 Mamba 新标杆
人工智能·pytorch·深度学习·计算机视觉·视觉检测·transformer
AY呀17 分钟前
DeepSeek:探索AI大模型与开发工具的全景指南
后端·机器学习
Hello_Embed44 分钟前
FreeRTOS 入门(四):堆的核心原理
数据结构·笔记·学习·链表·freertos·
Juchecar1 小时前
从微观到宏观:视觉和听觉的区别
计算机视觉
虹科测试测量1 小时前
德思特干货 | 单通道、多通道衰减器与衰减矩阵:如何选择合适的衰减方案
服务器·测试工具·算法·矩阵
m0_635129261 小时前
内外具身智能VLA模型深度解析
人工智能·机器学习
mit6.8242 小时前
py期中实验选题:实现天气预测
python·算法
烧冻鸡翅QAQ2 小时前
考研408笔记——数据结构
数据结构·笔记·考研
minhuan2 小时前
构建AI智能体:九十五、YOLO视觉大模型入门指南:从零开始掌握目标检测
人工智能·yolo·目标检测·计算机视觉·视觉大模型