24/10/12 算法笔记 比特分层

比特平面分层可以用于图像增强、图像压缩和图像分析等。

比特分层:对于一幅8比特的灰度图像,每个像素点的像素值可以用8位二进制数表示,通常在0到255的范围内。比特平面分层是将这些8位二进制数拆分成8个独立的平面,每个平面对应于一个特定的二进制位。每个位平面只包含了图像中对应像素的该位的信息,其他位都被设置为0。

一种方法是将各个位的像素值分别除128,64,32......2,1,另一种用像素值与各比特面的值 2n(其中 n为比特面编号)进行位与操作,判断该像素值在该比特面是否存在即该比特位是否为1。如果存在,则进行二值化,给该像素值所在位赋值为255,突出显示该比特;否则赋值0。

下面是代码:

复制代码
import cv2
import numpy as np
import matplotlib.pyplot as plt

# 更改为需要的图片路径
img = cv2.imread('path_to_image.jpg', 0)
h, w = img.shape[0],img.shape[1]

#处理过程
new_img = np.zeros((h, w), 8)#跟源图像一样大小的图像,八位,先用0来填充
for y in range(h):
     for x in range(w):
#对每个图像像素进行循环,img[i , j]是每次遍历得到的每个像素,像素值
       n = str(np.binary_repr(img[i,j],8))
for k in range(8):
new_img[i , j ,k] = n[ k ] 
#依次显示
for i in range(8):
    cv2.imshow("image', new_i
相关推荐
源于花海17 小时前
迁移学习相关的期刊和会议
人工智能·机器学习·迁移学习·期刊会议
不会代码的小猴18 小时前
Linux环境编程第六天笔记--system-V IPC
linux·笔记
乌恩大侠18 小时前
【笔记】USRP 5G 和 6G 参考架构
笔记·5g
biuyyyxxx18 小时前
Python自动化办公学习笔记(一) 工具安装&教程
笔记·python·学习·自动化
不懒不懒19 小时前
【线性 VS 逻辑回归:一篇讲透两种核心回归模型】
人工智能·机器学习
冰西瓜60019 小时前
从项目入手机器学习——(四)特征工程(简单特征探索)
人工智能·机器学习
舟舟亢亢19 小时前
Java集合笔记总结
java·笔记
A_nanda19 小时前
c# MOdbus rto读写串口,如何不相互影响
算法·c#·多线程
丝斯201120 小时前
AI学习笔记整理(66)——多模态大模型MOE-LLAVA
人工智能·笔记·学习
小鸡吃米…20 小时前
机器学习中的代价函数
人工智能·python·机器学习