【OpenCV】(六)—— 阈值处理

阈值处理(Thresholding)用于将灰度图像转换为二值图像。通过设定一个或多个阈值,可以将图像中的像素分为不同的类别,通常用于分割前景和背景、简化图像、去除噪声等任务。OpenCV 提供了多种阈值处理方法,下面介绍基本阈值处理和自动阈值处理。

基本阈值处理

基本阈值处理方法cv2.threshold,函数原型如下:

复制代码
ret, thresh = cv2.threshold(src, thresh, maxval, type)

参数说明:

  • src:输入图像,通常是单通道的灰度图像。
  • thresh:阈值。
  • maxval:超过或低于阈值时赋予的新值。
  • type:阈值类型,常见的有以下几种:
    • cv2.THRESH_BINARY:如果像素值大于阈值,设置为 maxval;否则设置为 0。
    • cv2.THRESH_BINARY_INV:如果像素值大于阈值,设置为 0;否则设置为 maxval
    • cv2.THRESH_TRUNC:如果像素值大于阈值,设置为阈值;否则保持不变。
    • cv2.THRESH_TOZERO:如果像素值大于阈值,保持不变;否则设置为 0。
    • cv2.THRESH_TOZERO_INV:如果像素值大于阈值,设置为 0;否则保持不变。

【示例】

py 复制代码
import matplotlib.pyplot as plt
img = cv2.imread('cat.jpg',0)
# 阈值处理只接收一个通道的数据
ret, thresh1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY)
ret, thresh2 = cv2.threshold(img,127,255,cv2.THRESH_BINARY_INV)
ret, thresh3 = cv2.threshold(img,127,255,cv2.THRESH_TRUNC)
ret, thresh4 = cv2.threshold(img,127,255,cv2.THRESH_TOZERO)
ret, thresh5 = cv2.threshold(img,127,255,cv2.THRESH_TOZERO_INV)

titles = ['Orininal Image','BINARY','BINARY_INV','TRUNC','TOZERO','TOZERO_INV']
images =[img,thresh1,thresh2,thresh3,thresh4,thresh5]

for i in range(6):
    plt.subplot(2,3,i+1), plt.imshow(images[i],'gray')
    plt.title(titles[i])
    plt.xticks([]),plt.yticks([])

print(ret)

运行结果:

自动阈值处理

自适应阈值处理适用于图像中光照不均匀或背景复杂的情况。它会根据图像的局部区域自动计算阈值。

cv2.adaptiveThreshold 函数原型如下:

复制代码
thresh = cv2.adaptiveThreshold(src, maxValue, adaptiveMethod, thresholdType, blockSize, C)

参数说明:

  • src:输入图像,通常是单通道的灰度图像。
  • maxValue:超过或低于阈值时赋予的新值。
  • adaptiveMethod:自适应方法,常见的有:
    • cv2.ADAPTIVE_THRESH_MEAN_C:阈值是邻域的平均值减去常数 C
    • cv2.ADAPTIVE_THRESH_GAUSSIAN_C:阈值是邻域的加权平均值减去常数 C
  • thresholdType:阈值类型,通常使用 cv2.THRESH_BINARYcv2.THRESH_BINARY_INV
  • blockSize:邻域大小,必须是奇数。
  • C:从平均值或加权平均值中减去的常数。

【示例】

py 复制代码
# 自动阈值处理
# 读取图像并转换为灰度图像
img = cv2.imread('cat.jpg', cv2.IMREAD_GRAYSCALE)

# 应用自适应阈值处理
adaptive_mean = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2)
adaptive_gaussian = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2)

# 显示结果
cv2.imshow('Adaptive Mean Thresholding', adaptive_mean)
cv2.imshow('Adaptive Gaussian Thresholding', adaptive_gaussian)

cv2.waitKey(0)
相关推荐
PaperRed ai写作降重助手8 分钟前
AI 论文写作工具排名(实测不踩坑)
人工智能·aigc·ai写作·论文写作·智能降重·辅助写作·降重复率
ktoking8 分钟前
Stock Agent AI 模型的选股器实现 [五]
人工智能·python
qwy71522925816312 分钟前
10-图像的翻转
人工智能·opencv·计算机视觉
霍格沃兹测试学院-小舟畅学13 分钟前
Playwright企业级测试架构设计:模块化与可扩展性
人工智能·测试工具
卡奥斯开源社区官方18 分钟前
深度拆解:Clawdbot“集体永生”技术内核,是AI协同突破还是营销噱头?
人工智能
小W与影刀RPA21 分钟前
【影刀 RPA】 :文档敏感词批量替换,省时省力又高效
人工智能·python·低代码·自动化·rpa·影刀rpa
小咖自动剪辑34 分钟前
12306余票监控辅助工具详解:自动查询/多方案预约/到点提交
人工智能
得赢科技38 分钟前
智能菜谱研发公司推荐 适配中小型餐饮
大数据·运维·人工智能
lovod1 小时前
视觉SLAM十四讲合集
计算机视觉·slam·视觉slam·g2o·ba·位姿图
victory04311 小时前
Gradio实现中英文切换,不影响页面状态,不得刷新页面情况下
人工智能