【OpenCV】(六)—— 阈值处理

阈值处理(Thresholding)用于将灰度图像转换为二值图像。通过设定一个或多个阈值,可以将图像中的像素分为不同的类别,通常用于分割前景和背景、简化图像、去除噪声等任务。OpenCV 提供了多种阈值处理方法,下面介绍基本阈值处理和自动阈值处理。

基本阈值处理

基本阈值处理方法cv2.threshold,函数原型如下:

ret, thresh = cv2.threshold(src, thresh, maxval, type)

参数说明:

  • src:输入图像,通常是单通道的灰度图像。
  • thresh:阈值。
  • maxval:超过或低于阈值时赋予的新值。
  • type:阈值类型,常见的有以下几种:
    • cv2.THRESH_BINARY:如果像素值大于阈值,设置为 maxval;否则设置为 0。
    • cv2.THRESH_BINARY_INV:如果像素值大于阈值,设置为 0;否则设置为 maxval
    • cv2.THRESH_TRUNC:如果像素值大于阈值,设置为阈值;否则保持不变。
    • cv2.THRESH_TOZERO:如果像素值大于阈值,保持不变;否则设置为 0。
    • cv2.THRESH_TOZERO_INV:如果像素值大于阈值,设置为 0;否则保持不变。

【示例】

py 复制代码
import matplotlib.pyplot as plt
img = cv2.imread('cat.jpg',0)
# 阈值处理只接收一个通道的数据
ret, thresh1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY)
ret, thresh2 = cv2.threshold(img,127,255,cv2.THRESH_BINARY_INV)
ret, thresh3 = cv2.threshold(img,127,255,cv2.THRESH_TRUNC)
ret, thresh4 = cv2.threshold(img,127,255,cv2.THRESH_TOZERO)
ret, thresh5 = cv2.threshold(img,127,255,cv2.THRESH_TOZERO_INV)

titles = ['Orininal Image','BINARY','BINARY_INV','TRUNC','TOZERO','TOZERO_INV']
images =[img,thresh1,thresh2,thresh3,thresh4,thresh5]

for i in range(6):
    plt.subplot(2,3,i+1), plt.imshow(images[i],'gray')
    plt.title(titles[i])
    plt.xticks([]),plt.yticks([])

print(ret)

运行结果:

自动阈值处理

自适应阈值处理适用于图像中光照不均匀或背景复杂的情况。它会根据图像的局部区域自动计算阈值。

cv2.adaptiveThreshold 函数原型如下:

thresh = cv2.adaptiveThreshold(src, maxValue, adaptiveMethod, thresholdType, blockSize, C)

参数说明:

  • src:输入图像,通常是单通道的灰度图像。
  • maxValue:超过或低于阈值时赋予的新值。
  • adaptiveMethod:自适应方法,常见的有:
    • cv2.ADAPTIVE_THRESH_MEAN_C:阈值是邻域的平均值减去常数 C
    • cv2.ADAPTIVE_THRESH_GAUSSIAN_C:阈值是邻域的加权平均值减去常数 C
  • thresholdType:阈值类型,通常使用 cv2.THRESH_BINARYcv2.THRESH_BINARY_INV
  • blockSize:邻域大小,必须是奇数。
  • C:从平均值或加权平均值中减去的常数。

【示例】

py 复制代码
# 自动阈值处理
# 读取图像并转换为灰度图像
img = cv2.imread('cat.jpg', cv2.IMREAD_GRAYSCALE)

# 应用自适应阈值处理
adaptive_mean = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2)
adaptive_gaussian = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2)

# 显示结果
cv2.imshow('Adaptive Mean Thresholding', adaptive_mean)
cv2.imshow('Adaptive Gaussian Thresholding', adaptive_gaussian)

cv2.waitKey(0)
相关推荐
lynn-fish2 分钟前
机器人对人工智能未来发展的影响
人工智能·机器人
旗晟机器人5 分钟前
A4-C四驱高防变电站巡检机器人
大数据·人工智能·安全·机器人
weixi_kelaile5209 分钟前
ai智能语音电销机器人可以做哪些事情?
java·linux·服务器·人工智能·机器人·云计算·腾讯云
爱喝热水的呀哈喽1 小时前
KAN原作论文github阅读(readme)
机器学习·github
雪兽软件5 小时前
人工智能和大数据如何改变企业?
大数据·人工智能
UMS攸信技术7 小时前
汽车电子行业数字化转型的实践与探索——以盈趣汽车电子为例
人工智能·汽车
ws2019077 小时前
聚焦汽车智能化与电动化︱AUTO TECH 2025 华南展,以展带会,已全面启动,与您相约11月广州!
大数据·人工智能·汽车
堇舟8 小时前
斯皮尔曼相关(Spearman correlation)系数
人工智能·算法·机器学习
爱写代码的小朋友8 小时前
使用 OpenCV 进行人脸检测
人工智能·opencv·计算机视觉