大数据之hadoop(hdfs部分)

1.引入:为什么需要分布式存储?

一个服务器能存入海量数据吗?显然是不能,所以构建分布式解决了存入问题.多台服务器的协调工作也是性能的横向扩展.

总结:

1.数据量太大,单机存储能力有上限,需要靠数量来解决问题

2.数量的提升带来的是网络传输、磁盘读写、CPU、内存等各方面的综合提升。分布式组合在一起可以达到1+1 > 2的效果

2.分布式的调度:

一.去中心化模式: 没有明确的中心点,协调工作 eg:kafka

二.中心化模式: 以一个节点为中心,基于中心点工作 eg:hadoop

3.主从模式(master-slaves):(中心化模式):一台master管理多台slaves工作

4.hdfs:(全称:hadoop distributed file system):也就是Hadoop分布式文件系统,是一个Hadoop的中间组件.主要解决海量数据的存储工作

5.hdfs集群架构(既然是中心化模式,那就有个中心点):

主角色:namenode(管理hdfs整个文件系统,管理database),带着一个secondarynode(辅助)

从角色(slaves):datanode(负责数据存储)

6.搭建集群:

主要的就:配置软连接

workers文件

hadoop-env.sh文件

core-site.xml文件

hdfs-site.xml文件

创建数据目录,修改文件的所属用户与所属用户组

格式化hadoop

也可以看我的专栏https://blog.csdn.net/m0_72898512/article/details/142883816?spm=1001.2014.3001.55017.启动集群

命令: start-dfs.sh

主namenode进程有:

从节点进程:

验证:主机名:9870/

8.代表集群机子数量

点进去就可以看到主机的信息了

配置好了记得快照

9.stop-dfs.sh关闭集群

10.然后关机即可

配置完成

相关推荐
Хайде1 分钟前
VIM的使用
linux·编辑器·vim
FakeOccupational10 分钟前
【p2p、分布式,区块链笔记 IPFS】go-ipfs windows系统客户端节点实现 kubo试用
分布式·区块链·p2p
杨超越luckly13 分钟前
基于地铁刷卡数据分析与可视化——以杭州市为例
大数据·python·阿里云·数据挖掘·数据分析
蜡笔小柯南1 小时前
Elasticsearch 安装教程:驾驭数据海洋的星际导航仪
大数据·elasticsearch·jenkins
问道飞鱼1 小时前
【分布式技术】分布式事务深入理解
分布式·saga·2pc·fmt·3pc
寰梦1 小时前
es安装拼音分词后Kibana出现内存错误
大数据·elasticsearch·jenkins
Dragon_qu·x1 小时前
Mac 配置SourceTree集成云效
linux·git·云计算·mac
龙哥·三年风水1 小时前
群控系统服务端开发模式-应用开发-业务架构逻辑开发第一轮测试
分布式·php·群控系统
Y.O.U..1 小时前
Linux-计算机网络-epoll的LT,ET模式
linux·服务器·计算机网络·算法·1024程序员节