大数据之hadoop(hdfs部分)

1.引入:为什么需要分布式存储?

一个服务器能存入海量数据吗?显然是不能,所以构建分布式解决了存入问题.多台服务器的协调工作也是性能的横向扩展.

总结:

1.数据量太大,单机存储能力有上限,需要靠数量来解决问题

2.数量的提升带来的是网络传输、磁盘读写、CPU、内存等各方面的综合提升。分布式组合在一起可以达到1+1 > 2的效果

2.分布式的调度:

一.去中心化模式: 没有明确的中心点,协调工作 eg:kafka

二.中心化模式: 以一个节点为中心,基于中心点工作 eg:hadoop

3.主从模式(master-slaves):(中心化模式):一台master管理多台slaves工作

4.hdfs:(全称:hadoop distributed file system):也就是Hadoop分布式文件系统,是一个Hadoop的中间组件.主要解决海量数据的存储工作

5.hdfs集群架构(既然是中心化模式,那就有个中心点):

主角色:namenode(管理hdfs整个文件系统,管理database),带着一个secondarynode(辅助)

从角色(slaves):datanode(负责数据存储)

6.搭建集群:

主要的就:配置软连接

workers文件

hadoop-env.sh文件

core-site.xml文件

hdfs-site.xml文件

创建数据目录,修改文件的所属用户与所属用户组

格式化hadoop

也可以看我的专栏https://blog.csdn.net/m0_72898512/article/details/142883816?spm=1001.2014.3001.55017.启动集群

命令: start-dfs.sh

主namenode进程有:

从节点进程:

验证:主机名:9870/

8.代表集群机子数量

点进去就可以看到主机的信息了

配置好了记得快照

9.stop-dfs.sh关闭集群

10.然后关机即可

配置完成

相关推荐
武子康1 小时前
大数据-98 Spark 从 DStream 到 Structured Streaming:Spark 实时计算的演进
大数据·后端·spark
阿里云大数据AI技术1 小时前
2025云栖大会·大数据AI参会攻略请查收!
大数据·人工智能
代码匠心4 小时前
从零开始学Flink:数据源
java·大数据·后端·flink
Lx3526 小时前
复杂MapReduce作业设计:多阶段处理的最佳实践
大数据·hadoop
武子康9 小时前
大数据-100 Spark DStream 转换操作全面总结:map、reduceByKey 到 transform 的实战案例
大数据·后端·spark
用户311879455921810 小时前
Kylin Linux 10 安装 glib2-devel-2.62.5-7.ky10.x86_64.rpm 方法(附安装包)
linux
expect7g10 小时前
Flink KeySelector
大数据·后端·flink
涛啊涛11 小时前
Centos7非LVM根分区容量不足后扩容,对调硬盘挂载/
linux·磁盘管理
阿里云大数据AI技术1 天前
StarRocks 助力数禾科技构建实时数仓:从数据孤岛到智能决策
大数据
CYRUS_STUDIO1 天前
用 Frida 控制 Android 线程:kill 命令、挂起与恢复全解析
android·linux·逆向