「图::连通」详解并查集并实现对应的功能 / 手撕数据结构(C++)

目录

概述

成员变量

创建销毁

根节点访问

路径压缩

启发式合并

复杂度

Code


概述

并查集,故名思议,能合并、能查询的集合,在图的连通性问题和许多算法优化上着广泛的使用。

这是一个什么数据结构呢?

一般来讲,并查集是由一系列集合组成的集合群。

其中,每个集合都有一个根节点,它的父亲仍是它自己,集合内其余的节点的父亲or祖宗均是这个节点,这样,一个根节点就领导了一个集合。而并查集支持这样的多个集合的访问以及合并操作。

每个集合都是一个树形结构,你可以认为并查集是一片森林。

听起来挺复杂度,但是其实很好实现。

成员变量

**static constexpr int N = 1e5 + 5;**一个无关紧要的常量,限制最大值。

**int pre[N];**父节点指针数组,pre[i]=j表示i的父亲是j,即二者处于同一集合。

**int size[N];**集合大小数组,只用每个集合的根节点上的size是有意义的,若i为根节点size[i]=x表示i所在的集合大小为x。

cpp 复制代码
struct union_find_set {
	static constexpr int N = 1e5 + 5;
	int pre[N],size[N];
    ...
};

创建销毁

在一开始,每个节点都单独成为一个集合,每个集合大小为1。

cpp 复制代码
union_find_set(int n = N) {
	for (int i = 0; i < n; i++) {
		pre[i] = i;
		size[i] = 1;
	}
}

根节点访问

给定一个节点x,我们想访问他的根节点

这一步可以递归实现:我们知道只有根节点的pre指向自己,所以如果pre[x]==x,我们就找到了根节点,否则沿着pre指针爬,传入下一级root。

cpp 复制代码
int root(int x) {
	return pre[x] == x ? x : root(pre[x]);
}

路径压缩

沿着pre指针爬树的过程的时间复杂度是线性级别的,但是我们可以使用路径压缩

当我们依次跳出递归时,额外将这一级x的pre指针更新为找到的根节点,这样,一棵树就由多层被压缩成了两层(根节点与叶子节点)。

cpp 复制代码
int root(int x) {
	return pre[x] = (pre[x] == x ? x : root(pre[x]));
}

启发式合并

想合并两个集合,我们可以采用启发式合并,即按规模合并。

路径压缩并不是实时的,所以一般一个集合仍是多层的。在这种情况下,为了保持查询根节点的高效性,我们应该将小集合接在大集合之下(小集合中节点少,向上访问的总代价小,如果反过来,那么大集合中的大量节点想向上访问会极其不利)。

给出两个节点,将其所在的集合合并,我们先找出root,如果两个节点确实属于不同集合,我们将小集合接在大集合之下,这样就能保持根节点查询的效率。最后根节点的size。

cpp 复制代码
void unite(int x, int y) {
	x = root(x), y = root(y);
	if (x == y)return;
	if (size[y] < size[x])std::swap(x, y);
	pre[x] = y;
	size[y] += size[x];
}

复杂度

时间复杂度:O(n) 使用路径压缩:O(1)~O(logn)

空间复杂度:O(n)

Code

cpp 复制代码
#include <algorithm>
#ifndef UNION_FIND_SET
#define UNION_FIND_SET
struct union_find_set {
	static constexpr int N = 1e5 + 5;
	int pre[N],size[N];
	union_find_set(int n) {
		for (int i = 0; i < n; i++) {
			pre[i] = i;
			size[i] = 1;
		}
	}
	int root(int x) {
		return pre[x] = (pre[x] == x ? x : root(pre[x]));
	}
	int get_size(int x) {
		return size[root(x)];
	}
	void unite(int x, int y) {
		x = root(x), y = root(y);
		if (x == y)return;
		if (size[y] < size[x])std::swap(x, y);
		pre[x] = y;
		size[y] += size[x];
	}
};
#endif
相关推荐
别NULL7 分钟前
机试题——最小矩阵宽度
c++·算法·矩阵
珊瑚里的鱼7 分钟前
【单链表算法实战】解锁数据结构核心谜题——环形链表
数据结构·学习·程序人生·算法·leetcode·链表·visual studio
无限码力11 分钟前
[矩阵扩散]
数据结构·算法·华为od·笔试真题·华为od e卷真题
gentle_ice12 分钟前
leetcode——矩阵置零(java)
java·算法·leetcode·矩阵
查理零世13 分钟前
保姆级讲解 python之zip()方法实现矩阵行列转置
python·算法·矩阵
zhbi9834 分钟前
测量校准原理
算法
时间很奇妙!1 小时前
decison tree 决策树
算法·决策树·机器学习
Icomi_1 小时前
【外文原版书阅读】《机器学习前置知识》1.线性代数的重要性,初识向量以及向量加法
c语言·c++·人工智能·深度学习·神经网络·机器学习·计算机视觉
apocelipes1 小时前
Linux glibc自带哈希表的用例及性能测试
c语言·c++·哈希表·linux编程
sysu631 小时前
95.不同的二叉搜索树Ⅱ python
开发语言·数据结构·python·算法·leetcode·面试·深度优先