pytorch求hessian

首先有个

网络定义

随意定义了,根据自己的情况

python 复制代码
class ANN(nn.Module):
    def __init__(self):
        super(ANN, self).__init__()
        self.fc1 = nn.Linear(10000, 1)
        # self.fc1.bias.data.fill_(0)
        
    def forward(self, data):
        x = self.fc1(data)
        return x

求hessian

autograd这个方法求梯度的时候分子是scalar ,分母是vector的时候,也即scalar对vector求导,得到的梯度向量和vector一样,而对于vector对vector求导,autograd没法求,只能求scalar对vector求导,所以需要循环。

python 复制代码
def getHessian(grads, model, loss_fn, dat, tar ,device):


    loss = loss_fn(model(dat), tar)
    grads_fn = torch.autograd.grad(loss, model.parameters(), retain_graph=True, create_graph=True) # 记录一阶梯度的grad_fn
 	
 	# 这部分是更新一阶梯度的值,因为其实我要计算的一阶梯度的值是grads
    for source, target in zip(grads, grads_fn):
        target.data.copy_(source)

    hessian_params = []
    #第k个梯度
    for k in range(len(grads_fn)):
        # 第i个参数
        for param in model.parameters():
            hess_params = []
            # 第k个梯度的地i行参数
            for i in range(grads_fn[k].size(0)):
                # 判断是w还是b
                if len(grads_fn[k].size()) == 2:
                    # w
                    for j in range(grads_fn[k].size(1)):  
                        hess = torch.autograd.grad(grads_fn[k][i][j], param, retain_graph=True, allow_unused= True)
                        hess_params.append(hess[0].cpu().detach().numpy() if hess[0] is not None else None)
                else:
                    # b
                    hess = torch.autograd.grad(grads_fn[k][i], param, retain_graph=True, allow_unused=True)
                    hess_params.append(hess[0].cpu().detach().numpy() if hess[0] is not None else None)
            hessian_params.append(np.array(hess_params))
    return hessian_params

关于backward和autograd

autograd只计算梯度不反向传播更新model的参数,因为这部分是torch中的优化器进行的,backward()也计算梯度,但获得具体一阶梯度信息需要用这个命令

grad_list = [p.grad.clone() for p in net.parameters()]

而这样得到的一阶梯度是不含grad_fn的,再进行求导的时候报错,虽然我也尝试loss.backward(retain_graph=True)用了这里的参数,但仍然无法解决问题,所以还是用了autograd。但在模型更新的时候两者使用并不冲突

python 复制代码
 net = ANN()
opt = optim.SGD(net.parameters(), lr=1e-4)


 net.load_state_dict(model_state_dict)
 net.to(device)

 opt.load_state_dict(optimizer_state_dict)
 
 opt.zero_grad()
 
 pred = net(inputs)

 loss = loss_fn(pred, targets)


 grads = torch.autograd.grad(loss, net.parameters(), retain_graph=True, create_graph=True) # 计算一阶梯度

 loss.backward(retain_graph=True)
 opt.step()
  
  ·········
  ······
  #之后进行hessian矩阵的计算就可以

参考

[1] 参考这个博客进行pytorch 求hessian

[2] 【矩阵的导数运算】标量向量方程对向量求导_分母布局_分子布局 此系列三个视频

[3] 常用矩阵微分公式_老子今晚不加班的博客-CSDN博客 这里提到的链接,里面也有提到[4]的链接

[4] Matrix calculus - Wikipedia这里面总结的很好

相关推荐
云空2 分钟前
《Python 与 SQLite:强大的数据库组合》
数据库·python·sqlite
成富32 分钟前
文本转SQL(Text-to-SQL),场景介绍与 Spring AI 实现
数据库·人工智能·sql·spring·oracle
凤枭香44 分钟前
Python OpenCV 傅里叶变换
开发语言·图像处理·python·opencv
CSDN云计算1 小时前
如何以开源加速AI企业落地,红帽带来新解法
人工智能·开源·openshift·红帽·instructlab
测试杂货铺1 小时前
外包干了2年,快要废了。。
自动化测试·软件测试·python·功能测试·测试工具·面试·职场和发展
艾派森1 小时前
大数据分析案例-基于随机森林算法的智能手机价格预测模型
人工智能·python·随机森林·机器学习·数据挖掘
hairenjing11231 小时前
在 Android 手机上从SD 卡恢复数据的 6 个有效应用程序
android·人工智能·windows·macos·智能手机
小蜗子1 小时前
Multi‐modal knowledge graph inference via media convergenceand logic rule
人工智能·知识图谱
SpikeKing1 小时前
LLM - 使用 LLaMA-Factory 微调大模型 环境配置与训练推理 教程 (1)
人工智能·llm·大语言模型·llama·环境配置·llamafactory·训练框架
小码的头发丝、1 小时前
Django中ListView 和 DetailView类的区别
数据库·python·django