非线性激活pytorch

**前置知识:

1、

复制代码
self.sigmoid1=Sigmoid()
复制代码
output=self.sigmoid1(input)

2、常见的非线性激活函数:

3、非线性激活的作用:

线性与非线性

  1. 线性函数:假设你用直线去描述波浪的形状。无论你怎么改变直线的斜率,结果都是一条直线,这样你就无法捕捉到波浪的起伏。这就像在神经网络中,如果只有线性激活函数,模型只能学习到线性关系,无法处理复杂的模式。

  2. 非线性激活函数:现在,想象你可以用曲线来描绘波浪。这条曲线能够随着波浪的起伏而变化,能够很好地展现出波浪的复杂形状。这就类似于引入了非线性激活函数(比如ReLU或Sigmoid)。通过这些激活函数,神经网络能够捕捉到复杂的特征和关系,比如图像中的边缘、纹理,或语音中的音调变化。

实际应用

举个实际例子,想象你在开发一个猫和狗的图像识别系统:

  • 没有非线性激活函数:你的模型只能识别简单的形状,比如直线和方形,它无法区分猫和狗,因为它无法理解它们的复杂特征。

  • 有非线性激活函数:引入非线性后,模型可以学习到猫的尖耳朵、圆眼睛和狗的扁鼻子等复杂特征。这使得模型能够更准确地识别猫和狗。

(即使用非线性激活,能在神经网络中引入非线性特征)

**代码:

input 导入并加载图像数据集------>nn 创建神经元------>output 计算并输出

(非线性激活是对矩阵里的数一个数一个数地进行转换;而池化里是用池化窗口来分块,一块一块地进行计算)

python 复制代码
import torch
import torchvision
from torch import nn
from torch.nn import ReLU, Sigmoid
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

test_set=torchvision.datasets.CIFAR10(root="./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader=DataLoader(test_set,batch_size=64)

class Xigua(nn.Module):
    def __init__(self):
        super().__init__()
        self.relu_1=ReLU()
        self.sigmoid1=Sigmoid()

    def forward(self,input):
        output=self.sigmoid1(input)
        return output

xigua1=Xigua()


writer=SummaryWriter("logs2")
step=1
for imgs,targets in dataloader:
    print(imgs.shape)
    writer.add_images("input1",imgs,step)
    imgs=xigua1(imgs)
    print(imgs.shape)
    writer.add_images("output1",imgs,step)
    step=step+1
    if step>=3:
        break
writer.close()

# input=torch.tensor([
#     [1,-0.5],
#     [-1,3]
# ])
# output=xigua1(input)
# print(output)
相关推荐
_codemonster5 分钟前
AI大模型入门到实战系列(八)文本聚类
人工智能·数据挖掘·聚类
AI码上来17 分钟前
眼神交流+触摸感应,打造更贴心的小智AI:原理和实现
人工智能
露临霜17 分钟前
重启机器学习
人工智能·机器学习
IT·小灰灰31 分钟前
告别“翻墙“烦恼:DMXAPI让Gemini-3-pro-thinking调用快如闪电
网络·人工智能·python·深度学习·云计算
gwd20033 分钟前
如何快速设置 Docker 代理设置
运维·人工智能·docker·容器
DatGuy42 分钟前
Week 29: 深度学习补遗:MoE的稳定性机制与路由策略实现
人工智能·深度学习
mys55181 小时前
杨建允:AI搜索趋势对留学服务行业的影响
人工智能·geo·ai搜索优化·geo优化·ai引擎优化
Curvatureflight1 小时前
前端性能优化实战:从3秒到300ms的加载速度提升
前端·人工智能·性能优化
新智元1 小时前
仅 4 人 28 天!OpenAI 首曝 Sora 内幕:85% 代码竟由 AI 完成
人工智能·openai
受之以蒙2 小时前
Rust 与 dora-rs:吃透核心概念,手把手打造跨语言的机器人实时数据流应用
人工智能·笔记·rust