非线性激活pytorch

**前置知识:

1、

复制代码
self.sigmoid1=Sigmoid()
复制代码
output=self.sigmoid1(input)

2、常见的非线性激活函数:

3、非线性激活的作用:

线性与非线性

  1. 线性函数:假设你用直线去描述波浪的形状。无论你怎么改变直线的斜率,结果都是一条直线,这样你就无法捕捉到波浪的起伏。这就像在神经网络中,如果只有线性激活函数,模型只能学习到线性关系,无法处理复杂的模式。

  2. 非线性激活函数:现在,想象你可以用曲线来描绘波浪。这条曲线能够随着波浪的起伏而变化,能够很好地展现出波浪的复杂形状。这就类似于引入了非线性激活函数(比如ReLU或Sigmoid)。通过这些激活函数,神经网络能够捕捉到复杂的特征和关系,比如图像中的边缘、纹理,或语音中的音调变化。

实际应用

举个实际例子,想象你在开发一个猫和狗的图像识别系统:

  • 没有非线性激活函数:你的模型只能识别简单的形状,比如直线和方形,它无法区分猫和狗,因为它无法理解它们的复杂特征。

  • 有非线性激活函数:引入非线性后,模型可以学习到猫的尖耳朵、圆眼睛和狗的扁鼻子等复杂特征。这使得模型能够更准确地识别猫和狗。

(即使用非线性激活,能在神经网络中引入非线性特征)

**代码:

input 导入并加载图像数据集------>nn 创建神经元------>output 计算并输出

(非线性激活是对矩阵里的数一个数一个数地进行转换;而池化里是用池化窗口来分块,一块一块地进行计算)

python 复制代码
import torch
import torchvision
from torch import nn
from torch.nn import ReLU, Sigmoid
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

test_set=torchvision.datasets.CIFAR10(root="./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader=DataLoader(test_set,batch_size=64)

class Xigua(nn.Module):
    def __init__(self):
        super().__init__()
        self.relu_1=ReLU()
        self.sigmoid1=Sigmoid()

    def forward(self,input):
        output=self.sigmoid1(input)
        return output

xigua1=Xigua()


writer=SummaryWriter("logs2")
step=1
for imgs,targets in dataloader:
    print(imgs.shape)
    writer.add_images("input1",imgs,step)
    imgs=xigua1(imgs)
    print(imgs.shape)
    writer.add_images("output1",imgs,step)
    step=step+1
    if step>=3:
        break
writer.close()

# input=torch.tensor([
#     [1,-0.5],
#     [-1,3]
# ])
# output=xigua1(input)
# print(output)
相关推荐
shangjian0072 小时前
AI-大语言模型LLM-Transformer架构4-多头注意力、掩码注意力、交叉注意力
人工智能·语言模型·transformer
努力犯错2 小时前
如何使用AI图片扩展器扩展图片边界:2026年完整指南
人工智能
晨非辰2 小时前
Linux权限管理速成:umask掩码/file透视/粘滞位防护15分钟精通,掌握权限减法与安全协作模型
linux·运维·服务器·c++·人工智能·后端
2501_941507943 小时前
【YOLOv26】教育环境中危险物品实时检测系统_基于深度学习的校园安全解决方案
深度学习·安全·yolo
丝斯20113 小时前
AI学习笔记整理(63)——大模型对齐与强化学习
人工智能·笔记·学习
延凡科技6 小时前
无人机低空智能巡飞巡检平台:全域感知与智能决策的低空作业中枢
大数据·人工智能·科技·安全·无人机·能源
2501_941329726 小时前
YOLOv8-SEAMHead改进实战:书籍检测与识别系统优化方案
人工智能·yolo·目标跟踪
晓翔仔8 小时前
【深度实战】Agentic AI 安全攻防指南:基于 CSA 红队测试手册的 12 类风险完整解析
人工智能·安全·ai·ai安全
百家方案8 小时前
2026年数据治理整体解决方案 - 全1066页下载
大数据·人工智能·数据治理
北京耐用通信8 小时前
工业自动化中耐达讯自动化Profibus光纤链路模块连接RFID读写器的应用
人工智能·科技·物联网·自动化·信息与通信