非线性激活pytorch

**前置知识:

1、

复制代码
self.sigmoid1=Sigmoid()
复制代码
output=self.sigmoid1(input)

2、常见的非线性激活函数:

3、非线性激活的作用:

线性与非线性

  1. 线性函数:假设你用直线去描述波浪的形状。无论你怎么改变直线的斜率,结果都是一条直线,这样你就无法捕捉到波浪的起伏。这就像在神经网络中,如果只有线性激活函数,模型只能学习到线性关系,无法处理复杂的模式。

  2. 非线性激活函数:现在,想象你可以用曲线来描绘波浪。这条曲线能够随着波浪的起伏而变化,能够很好地展现出波浪的复杂形状。这就类似于引入了非线性激活函数(比如ReLU或Sigmoid)。通过这些激活函数,神经网络能够捕捉到复杂的特征和关系,比如图像中的边缘、纹理,或语音中的音调变化。

实际应用

举个实际例子,想象你在开发一个猫和狗的图像识别系统:

  • 没有非线性激活函数:你的模型只能识别简单的形状,比如直线和方形,它无法区分猫和狗,因为它无法理解它们的复杂特征。

  • 有非线性激活函数:引入非线性后,模型可以学习到猫的尖耳朵、圆眼睛和狗的扁鼻子等复杂特征。这使得模型能够更准确地识别猫和狗。

(即使用非线性激活,能在神经网络中引入非线性特征)

**代码:

input 导入并加载图像数据集------>nn 创建神经元------>output 计算并输出

(非线性激活是对矩阵里的数一个数一个数地进行转换;而池化里是用池化窗口来分块,一块一块地进行计算)

python 复制代码
import torch
import torchvision
from torch import nn
from torch.nn import ReLU, Sigmoid
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

test_set=torchvision.datasets.CIFAR10(root="./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader=DataLoader(test_set,batch_size=64)

class Xigua(nn.Module):
    def __init__(self):
        super().__init__()
        self.relu_1=ReLU()
        self.sigmoid1=Sigmoid()

    def forward(self,input):
        output=self.sigmoid1(input)
        return output

xigua1=Xigua()


writer=SummaryWriter("logs2")
step=1
for imgs,targets in dataloader:
    print(imgs.shape)
    writer.add_images("input1",imgs,step)
    imgs=xigua1(imgs)
    print(imgs.shape)
    writer.add_images("output1",imgs,step)
    step=step+1
    if step>=3:
        break
writer.close()

# input=torch.tensor([
#     [1,-0.5],
#     [-1,3]
# ])
# output=xigua1(input)
# print(output)
相关推荐
m0_748232925 分钟前
DALL-M:基于大语言模型的上下文感知临床数据增强方法 ,补充
人工智能·语言模型·自然语言处理
szxinmai主板定制专家10 分钟前
【国产NI替代】基于FPGA的32通道(24bits)高精度终端采集核心板卡
大数据·人工智能·fpga开发
海棠AI实验室13 分钟前
AI的进阶之路:从机器学习到深度学习的演变(三)
人工智能·深度学习·机器学习
机器懒得学习25 分钟前
基于YOLOv5的智能水域监测系统:从目标检测到自动报告生成
人工智能·yolo·目标检测
QQ同步助手39 分钟前
如何正确使用人工智能:开启智慧学习与创新之旅
人工智能·学习·百度
AIGC大时代42 分钟前
如何使用ChatGPT辅助文献综述,以及如何进行优化?一篇说清楚
人工智能·深度学习·chatgpt·prompt·aigc
流浪的小新1 小时前
【AI】人工智能、LLM学习资源汇总
人工智能·学习
martian6652 小时前
【人工智能数学基础篇】——深入详解多变量微积分:在机器学习模型中优化损失函数时应用
人工智能·机器学习·微积分·数学基础
人机与认知实验室3 小时前
人、机、环境中各有其神经网络系统
人工智能·深度学习·神经网络·机器学习
黑色叉腰丶大魔王3 小时前
基于 MATLAB 的图像增强技术分享
图像处理·人工智能·计算机视觉