LangGraph 源码分析 | BaseTool 模板类

文章目录

BaseTool 源码分析

BaseTool 是 LangChain 框架中定义 tools 的模板类

核心属性

  • name表示 tool 唯一名称的字符串(用于识别)
  • description:对如何 / 何时 / 为何使用该 tool 的描述,帮助模型决定什么时候调用该 tool
  • args_schema:验证工具输入参数的 Pydantic model 或 schema
  • return_direct:如果为 True,则立即返回 tool 的输出
  • responcse_format:定义 tool 的响应格式
TavilySearchResults(BaseTool) 为例
name
python 复制代码
name: str = "tavily_search_results_json"
description
python 复制代码
    description: str = (
        "A search engine optimized for comprehensive, accurate, and trusted results. "
        "Useful for when you need to answer questions about current events. "
        "Input should be a search query."
    )
args_schema
python 复制代码
class TavilyInput(BaseModel):
    """Input for the Tavily tool."""
    query: str = Field(description="search query to look up")


# 输入将遵循 TavilyInput 类中定义的架构规则
# 同时args_schema的值必须是BaseModel派生类
args_schema: Type[BaseModel] = TavilyInput
  • 按照TavilyInput的规则,如果输入没有提供query值,将抛出一个验证错误
  • Field函数用于向字段添加元数据(描述)
response_format
python 复制代码
response_format: Literal["content_and_artifact"] = "content_and_artifact"
  • 使用 Literal 来确保某些值被限制为特定文字
python 复制代码
@_LiteralSpecialForm
@_tp_cache(typed=True)
def Literal(self, *parameters):
    """Special typing form to define literal types (a.k.a. value types).

    This form can be used to indicate to type checkers that the corresponding
    variable or function parameter has a value equivalent to the provided
    literal (or one of several literals):

      def validate_simple(data: Any) -> Literal[True]:  # always returns True
          ...

      MODE = Literal['r', 'rb', 'w', 'wb']
      def open_helper(file: str, mode: MODE) -> str:
          ...

      open_helper('/some/path', 'r')  # Passes type check
      open_helper('/other/path', 'typo')  # Error in type checker

    Literal[...] cannot be subclassed. At runtime, an arbitrary value
    is allowed as type argument to Literal[...], but type checkers may
    impose restrictions.
    """
    # There is no '_type_check' call because arguments to Literal[...] are
    # values, not types.
    parameters = _flatten_literal_params(parameters)

    try:
        parameters = tuple(p for p, _ in _deduplicate(list(_value_and_type_iter(parameters))))
    except TypeError:  # unhashable parameters
        pass

    return _LiteralGenericAlias(self, parameters)
查询选项属性
  • **max_results:返回的最大结果数量,默认为 5。
  • **search_depth:查询的深度,可以是 "basic""advanced",默认是 "advanced"
  • **include_domains:一个包含在结果中的域名列表(默认为空,即包含所有域名)。
  • exclude_domains:一个排除在结果之外的域名列表。
  • include_answer:是否在结果中包含简短答案,默认值为 False
  • include_raw_content:是否返回 HTML 原始内容的解析结果(默认关闭)。
  • include_images:是否在结果中包含相关图片,默认值为 False

需要子类实现的抽象方法

python 复制代码
    @abstractmethod
    def _run(self, *args: Any, **kwargs: Any) -> Any:
        """Use the tool.

        Add run_manager: Optional[CallbackManagerForToolRun] = None
        to child implementations to enable tracing.
        """
TavilySearchResults(BaseTool) 为例
python 复制代码
api_wrapper: TavilySearchAPIWrapper = Field(default_factory=TavilySearchAPIWrapper)  # type: ignore[arg-type]
  • api_wrapper 是一个 TavilySearchAPIWrapper 实例,用于封装 API 调用的细节
python 复制代码
class TavilySearchAPIWrapper(BaseModel):
    """Wrapper for Tavily Search API."""

    tavily_api_key: SecretStr

    model_config = ConfigDict(
        extra="forbid",
    )

    @model_validator(mode="before")
    @classmethod
    def validate_environment(cls, values: Dict) -> Any:
        """Validate that api key and endpoint exists in environment."""
        tavily_api_key = get_from_dict_or_env(
            values, "tavily_api_key", "TAVILY_API_KEY"
        )
        values["tavily_api_key"] = tavily_api_key

        return values

    def raw_results(
        self,
        query: str,
        max_results: Optional[int] = 5,
        search_depth: Optional[str] = "advanced",
        include_domains: Optional[List[str]] = [],
        exclude_domains: Optional[List[str]] = [],
        include_answer: Optional[bool] = False,
        include_raw_content: Optional[bool] = False,
        include_images: Optional[bool] = False,
    ) -> Dict:
        params = {
            "api_key": self.tavily_api_key.get_secret_value(),
            "query": query,
            "max_results": max_results,
            "search_depth": search_depth,
            "include_domains": include_domains,
            "exclude_domains": exclude_domains,
            "include_answer": include_answer,
            "include_raw_content": include_raw_content,
            "include_images": include_images,
        }
        response = requests.post(
            # type: ignore
            f"{TAVILY_API_URL}/search",
            json=params,
        )
        response.raise_for_status()
        return response.json()

    def results(
        self,
        query: str,
        max_results: Optional[int] = 5,
        search_depth: Optional[str] = "advanced",
        include_domains: Optional[List[str]] = [],
        exclude_domains: Optional[List[str]] = [],
        include_answer: Optional[bool] = False,
        include_raw_content: Optional[bool] = False,
        include_images: Optional[bool] = False,
    ) -> List[Dict]:
        """Run query through Tavily Search and return metadata.

        Args:
            query: The query to search for.
            max_results: The maximum number of results to return.
            search_depth: The depth of the search. Can be "basic" or "advanced".
            include_domains: A list of domains to include in the search.
            exclude_domains: A list of domains to exclude from the search.
            include_answer: Whether to include the answer in the results.
            include_raw_content: Whether to include the raw content in the results.
            include_images: Whether to include images in the results.
        Returns:
            query: The query that was searched for.
            follow_up_questions: A list of follow up questions.
            response_time: The response time of the query.
            answer: The answer to the query.
            images: A list of images.
            results: A list of dictionaries containing the results:
                title: The title of the result.
                url: The url of the result.
                content: The content of the result.
                score: The score of the result.
                raw_content: The raw content of the result.
        """
        raw_search_results = self.raw_results(
            query,
            max_results=max_results,
            search_depth=search_depth,
            include_domains=include_domains,
            exclude_domains=exclude_domains,
            include_answer=include_answer,
            include_raw_content=include_raw_content,
            include_images=include_images,
        )
        return self.clean_results(raw_search_results["results"])

    async def raw_results_async(
        self,
        query: str,
        max_results: Optional[int] = 5,
        search_depth: Optional[str] = "advanced",
        include_domains: Optional[List[str]] = [],
        exclude_domains: Optional[List[str]] = [],
        include_answer: Optional[bool] = False,
        include_raw_content: Optional[bool] = False,
        include_images: Optional[bool] = False,
    ) -> Dict:
        """Get results from the Tavily Search API asynchronously."""

        # Function to perform the API call
        async def fetch() -> str:
            params = {
                "api_key": self.tavily_api_key.get_secret_value(),
                "query": query,
                "max_results": max_results,
                "search_depth": search_depth,
                "include_domains": include_domains,
                "exclude_domains": exclude_domains,
                "include_answer": include_answer,
                "include_raw_content": include_raw_content,
                "include_images": include_images,
            }
            async with aiohttp.ClientSession() as session:
                async with session.post(f"{TAVILY_API_URL}/search", json=params) as res:
                    if res.status == 200:
                        data = await res.text()
                        return data
                    else:
                        raise Exception(f"Error {res.status}: {res.reason}")

        results_json_str = await fetch()
        return json.loads(results_json_str)

    async def results_async(
        self,
        query: str,
        max_results: Optional[int] = 5,
        search_depth: Optional[str] = "advanced",
        include_domains: Optional[List[str]] = [],
        exclude_domains: Optional[List[str]] = [],
        include_answer: Optional[bool] = False,
        include_raw_content: Optional[bool] = False,
        include_images: Optional[bool] = False,
    ) -> List[Dict]:
        results_json = await self.raw_results_async(
            query=query,
            max_results=max_results,
            search_depth=search_depth,
            include_domains=include_domains,
            exclude_domains=exclude_domains,
            include_answer=include_answer,
            include_raw_content=include_raw_content,
            include_images=include_images,
        )
        return self.clean_results(results_json["results"])

    def clean_results(self, results: List[Dict]) -> List[Dict]:
        """Clean results from Tavily Search API."""
        clean_results = []
        for result in results:
            clean_results.append(
                {
                    "url": result["url"],
                    "content": result["content"],
                }
            )
        return clean_results
  • raw_results():同步调用 API。
  • raw_results_async():异步调用 API。
  • clean_results():清理和格式化查询结果。
python 复制代码
    def _run(
        self,
        query: str,
        run_manager: Optional[CallbackManagerForToolRun] = None,
    ) -> Tuple[Union[List[Dict[str, str]], str], Dict]:
        """Use the tool."""
        # TODO: remove try/except, should be handled by BaseTool
        try:
            raw_results = self.api_wrapper.raw_results(
                query,
                self.max_results,
                self.search_depth,
                self.include_domains,
                self.exclude_domains,
                self.include_answer,
                self.include_raw_content,
                self.include_images,
            )
        except Exception as e:
            return repr(e), {}
        return self.api_wrapper.clean_results(raw_results["results"]), raw_results
  • 传入查询参数,调用 TavilySearchAPIWrapper 来获取结果。
  • 如果查询失败,则返回错误信息。

核心方法

arun()run()的异步执行版本
python 复制代码
    async def _arun(self, *args: Any, **kwargs: Any) -> Any:
        """Use the tool asynchronously.

        Add run_manager: Optional[AsyncCallbackManagerForToolRun] = None
        to child implementations to enable tracing.
        """
        if kwargs.get("run_manager") and signature(self._run).parameters.get(
            "run_manager"
        ):
            kwargs["run_manager"] = kwargs["run_manager"].get_sync()
        return await run_in_executor(None, self._run, *args, **kwargs)
  • 若具有run_manager参数,则转换为同步版本,然后使用默认执行器异步运行 self._run 方法
  • run_in_executor 是一个异步执行器,它允许你在不同的执行器中运行同步代码,而不会阻塞当前的事件循环
invoke()ainvoke()
plain 复制代码
def invoke(
    self,
    input: Union[str, dict, ToolCall],
    config: Optional[RunnableConfig] = None,
    **kwargs: Any,
) -> Any:
    tool_input, kwargs = _prep_run_args(input, config, **kwargs)
    return self.run(tool_input, **kwargs)

async def ainvoke(
    self,
    input: Union[str, dict, ToolCall],
    config: Optional[RunnableConfig] = None,
    **kwargs: Any,
) -> Any:
    tool_input, kwargs = _prep_run_args(input, config, **kwargs)
    return await self.arun(tool_input, **kwargs)
  • 充当执行工具逻辑的入口点
  • 准备输入参数,并在内部调用run()arun()
相关推荐
ZHOU_WUYI1 天前
5.tree of thought 源码 (prompts 类)
langchain
waiting不是违停2 天前
MetaGPT实现多动作Agent
langchain·llm
ZHOU_WUYI5 天前
2. langgraph中的react agent使用 (在react agent添加历史消息)
人工智能·langchain
ZHOU_WUYI5 天前
4. langgraph中的react agent使用 (在react agent添加人机交互)
人工智能·langchain
ZHOU_WUYI5 天前
5. langgraph中的react agent使用 (从零构建一个react agent)
人工智能·langchain
ZHOU_WUYI5 天前
3. langgraph中的react agent使用 (在react agent添加系统提示)
人工智能·langchain
三月七(爱看动漫的程序员)6 天前
LM2 : A Simple Society of Language Models Solves Complex Reasoning
人工智能·gpt·语言模型·自然语言处理·chatgpt·langchain·1024程序员节
DbWong_09186 天前
langchain_chatchat+ollama部署本地知识库,联网查询以及对数据库(Oracle)数据进行查询
python·oracle·langchain·ollama
AI大模型-王哥8 天前
产业科普 | 什么是人工智能和大模型?大模型入门到精通 看完你就明白了
人工智能·学习·langchain·大模型·大模型学习·大模型入门·大模型教程
CM莫问10 天前
python实战(七)——基于LangChain的RAG实践
人工智能·python·深度学习·算法·自然语言处理·chatgpt·langchain