OpenCV视觉分析之运动分析背景减除类BackgroundSubtractor的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

背景/前景分割的基类:

这个类仅用于定义整个背景/前景分割算法家族的共同接口

cv::BackgroundSubtractor 是 OpenCV 中用于背景减除的基类。它定义了一个接口,用于实现各种背景减除算法。这个基类包含了所有背景减除算法共同的操作,如初始化、处理帧以获得前景掩码、更新背景模型等。

背景减除(Background Subtraction)是一种用于视频分析的技术,主要用于检测和分割前景物体(即移动物体),以从连续的视频帧中分离出背景部分。这种方法基于一个假设:视频中的大部分区域在大多数时间内是相对静止的,这些区域被视为背景;而前景则是相对于背景发生移动的对象。

成员函数apply()

计算一个前景掩码。

函数原型

cpp 复制代码
virtual void cv::BackgroundSubtractor::apply	
(
	InputArray 	image,
	OutputArray 	fgmask,
	double 	learningRate = -1 
)		

参数

  • 参数image 下一个视频帧。
  • 参数fgmask 输出的前景掩码,作为一个8位的二值图像。
  • 参数learningRate 一个介于0和1之间的值,表示背景模型的学习速度。负参数值使算法使用某种自动选择的学习率。0意味着背景模型完全不更新,1意味着背景模型完全从最后一帧重新初始化

代码示例

cpp 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>

int main( int argc, char** argv )
{
    // 创建一个背景减除器实例
    cv::Ptr< cv::BackgroundSubtractor > pBackSub = cv::createBackgroundSubtractorMOG2();

    // 设置参数
    
    // 打开视频文件
    cv::VideoCapture capture( 0 );
    if ( !capture.isOpened() )
    {
        std::cerr << "Failed to open video file." << std::endl;
        return -1;
    }

    // 读取每一帧并处理
    cv::Mat frame, fgMask;
    while ( capture.read( frame ) )
    {
        // 应用背景减除
        pBackSub->apply( frame, fgMask );

        // 显示结果
        cv::imshow( "Frame", frame );
        cv::imshow( "FG Mask", fgMask );

        // 按 'q' 键退出
        if ( cv::waitKey( 30 ) == 'q' )
        {
            break;
        }
    }

    // 释放资源
    capture.release();
    cv::destroyAllWindows();

    return 0;
}

运行结果

视频中那个玉竹是在摆动的状态

相关推荐
szxinmai主板定制专家1 小时前
基于x86和ARM的EtherCAT运动控制器,最大支持32轴,支持codesys和实时系统优化
arm开发·人工智能·嵌入式硬件·yolo
JarryStudy1 小时前
自动调优在Triton-on-Ascend中的应用:从参数优化到性能极致挖掘
人工智能·算法·昇腾·cann·ascend c
TTGGGFF1 小时前
AI 十大论文精讲(二):GPT-3 论文全景解析——大模型 + 提示词如何解锁 “举一反三” 能力?
人工智能·gpt-3
智能化咨询1 小时前
(66页PPT)高校智慧校园解决方案(附下载方式)
大数据·数据库·人工智能
腾飞开源1 小时前
08_Spring AI 干货笔记之结构化输出
人工智能·spring ai·数据类型转换·结构化输出·ai模型集成·输出转换器·json模式
轮到我狗叫了1 小时前
Contrastive pseudo learning for openworld deepfake attribution 超细致论文笔记,第一次读论文
人工智能
LitchiCheng1 小时前
Mujoco 检验 KDL 和 Pinocchio 运动学 FK 是否一致
人工智能·python
2的n次方_1 小时前
openGauss压力测试:性能、稳定性与AI能力的全面探索
数据库·人工智能·压力测试
云雾J视界1 小时前
当AI能写代码时,顶级工程师在做什么?大模型时代的系统架构思维重塑
人工智能·系统架构·思维重塑·能力边界·能力重构·系统定义
TechWJ1 小时前
Rokid AR眼镜智能提词器开发实战:从SDK集成到AI自动跟踪
人工智能·ai·ar·ar眼镜