OpenCV视觉分析之运动分析背景减除类BackgroundSubtractor的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

背景/前景分割的基类:

这个类仅用于定义整个背景/前景分割算法家族的共同接口

cv::BackgroundSubtractor 是 OpenCV 中用于背景减除的基类。它定义了一个接口,用于实现各种背景减除算法。这个基类包含了所有背景减除算法共同的操作,如初始化、处理帧以获得前景掩码、更新背景模型等。

背景减除(Background Subtraction)是一种用于视频分析的技术,主要用于检测和分割前景物体(即移动物体),以从连续的视频帧中分离出背景部分。这种方法基于一个假设:视频中的大部分区域在大多数时间内是相对静止的,这些区域被视为背景;而前景则是相对于背景发生移动的对象。

成员函数apply()

计算一个前景掩码。

函数原型

cpp 复制代码
virtual void cv::BackgroundSubtractor::apply	
(
	InputArray 	image,
	OutputArray 	fgmask,
	double 	learningRate = -1 
)		

参数

  • 参数image 下一个视频帧。
  • 参数fgmask 输出的前景掩码,作为一个8位的二值图像。
  • 参数learningRate 一个介于0和1之间的值,表示背景模型的学习速度。负参数值使算法使用某种自动选择的学习率。0意味着背景模型完全不更新,1意味着背景模型完全从最后一帧重新初始化

代码示例

cpp 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>

int main( int argc, char** argv )
{
    // 创建一个背景减除器实例
    cv::Ptr< cv::BackgroundSubtractor > pBackSub = cv::createBackgroundSubtractorMOG2();

    // 设置参数
    
    // 打开视频文件
    cv::VideoCapture capture( 0 );
    if ( !capture.isOpened() )
    {
        std::cerr << "Failed to open video file." << std::endl;
        return -1;
    }

    // 读取每一帧并处理
    cv::Mat frame, fgMask;
    while ( capture.read( frame ) )
    {
        // 应用背景减除
        pBackSub->apply( frame, fgMask );

        // 显示结果
        cv::imshow( "Frame", frame );
        cv::imshow( "FG Mask", fgMask );

        // 按 'q' 键退出
        if ( cv::waitKey( 30 ) == 'q' )
        {
            break;
        }
    }

    // 释放资源
    capture.release();
    cv::destroyAllWindows();

    return 0;
}

运行结果

视频中那个玉竹是在摆动的状态

相关推荐
金井PRATHAMA16 小时前
认知语义学隐喻理论对人工智能自然语言处理中深层语义分析的赋能与挑战
人工智能·自然语言处理·知识图谱
J_Xiong011716 小时前
【VLMs篇】07:Open-Qwen2VL:在学术资源上对完全开放的多模态大语言模型进行计算高效的预训练
人工智能·语言模型·自然语言处理
老兵发新帖16 小时前
LlamaFactory能做哪些?
人工智能
2202_7567496916 小时前
LLM大模型-大模型微调(常见微调方法、LoRA原理与实战、LLaMA-Factory工具部署与训练、模型量化QLoRA)
人工智能·深度学习·llama
人有一心16 小时前
深度学习中显性特征组合的网络结构crossNet
人工智能·深度学习
机器之心17 小时前
用光学生成图像,几乎0耗电,浙大校友一作研究登Nature
人工智能·openai
苏苏susuus17 小时前
NLP:Transformer之self-attention(特别分享3)
人工智能·自然语言处理·transformer
猫天意17 小时前
【目标检测】metrice_curve和loss_curve对比图可视化
人工智能·深度学习·目标检测·计算机视觉·cv
山烛17 小时前
OpenCV:图像透视变换
人工智能·opencv·计算机视觉·图像透视变换