OpenCV视觉分析之运动分析背景减除类BackgroundSubtractor的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

背景/前景分割的基类:

这个类仅用于定义整个背景/前景分割算法家族的共同接口

cv::BackgroundSubtractor 是 OpenCV 中用于背景减除的基类。它定义了一个接口,用于实现各种背景减除算法。这个基类包含了所有背景减除算法共同的操作,如初始化、处理帧以获得前景掩码、更新背景模型等。

背景减除(Background Subtraction)是一种用于视频分析的技术,主要用于检测和分割前景物体(即移动物体),以从连续的视频帧中分离出背景部分。这种方法基于一个假设:视频中的大部分区域在大多数时间内是相对静止的,这些区域被视为背景;而前景则是相对于背景发生移动的对象。

成员函数apply()

计算一个前景掩码。

函数原型

cpp 复制代码
virtual void cv::BackgroundSubtractor::apply	
(
	InputArray 	image,
	OutputArray 	fgmask,
	double 	learningRate = -1 
)		

参数

  • 参数image 下一个视频帧。
  • 参数fgmask 输出的前景掩码,作为一个8位的二值图像。
  • 参数learningRate 一个介于0和1之间的值,表示背景模型的学习速度。负参数值使算法使用某种自动选择的学习率。0意味着背景模型完全不更新,1意味着背景模型完全从最后一帧重新初始化

代码示例

cpp 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>

int main( int argc, char** argv )
{
    // 创建一个背景减除器实例
    cv::Ptr< cv::BackgroundSubtractor > pBackSub = cv::createBackgroundSubtractorMOG2();

    // 设置参数
    
    // 打开视频文件
    cv::VideoCapture capture( 0 );
    if ( !capture.isOpened() )
    {
        std::cerr << "Failed to open video file." << std::endl;
        return -1;
    }

    // 读取每一帧并处理
    cv::Mat frame, fgMask;
    while ( capture.read( frame ) )
    {
        // 应用背景减除
        pBackSub->apply( frame, fgMask );

        // 显示结果
        cv::imshow( "Frame", frame );
        cv::imshow( "FG Mask", fgMask );

        // 按 'q' 键退出
        if ( cv::waitKey( 30 ) == 'q' )
        {
            break;
        }
    }

    // 释放资源
    capture.release();
    cv::destroyAllWindows();

    return 0;
}

运行结果

视频中那个玉竹是在摆动的状态

相关推荐
沉淅尘几秒前
Agent Skills: 如何为大语言模型构建可复用技能
人工智能·ai·语言模型
山水无移2 分钟前
yolo26 部署瑞芯微rk3588、RKNN部署工程难度小、模型推理速度快
深度学习·yolo·目标检测·计算机视觉
啊阿狸不会拉杆2 分钟前
《数字图像处理》第 1 章 绪论
图像处理·人工智能·算法·计算机视觉·数字图像处理
Loo国昌3 分钟前
【LangChain1.0】第二篇 快速上手实战
网络·人工智能·后端·算法·microsoft·语言模型
无忧智库4 分钟前
一网统飞:城市级低空空域精细化管理与服务平台建设方案深度解析(WORD)
大数据·网络·人工智能
张彦峰ZYF6 分钟前
Java+Python双语言开发AI工具全景分析与选型指南
java·人工智能·python
Java后端的Ai之路6 分钟前
【AI大模型开发】-基于FAISS的语义搜索系统(实战)
人工智能·faiss·向量数据库
张3蜂10 分钟前
YOLOv8:下一代实时目标检测的全面解析
人工智能·yolo·目标检测
Java后端的Ai之路11 分钟前
【AI大模型开发】-基于向量数据库的PDF智能问答系统(实战)
人工智能·pdf·向量数据库·智能问答系统
PeterClerk14 分钟前
数据挖掘方向 CCF 期刊推荐(数据库 / 数据挖掘 / 内容检索)
数据库·人工智能·深度学习·数据挖掘·计算机期刊