OpenCV视觉分析之运动分析背景减除类BackgroundSubtractor的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

背景/前景分割的基类:

这个类仅用于定义整个背景/前景分割算法家族的共同接口

cv::BackgroundSubtractor 是 OpenCV 中用于背景减除的基类。它定义了一个接口,用于实现各种背景减除算法。这个基类包含了所有背景减除算法共同的操作,如初始化、处理帧以获得前景掩码、更新背景模型等。

背景减除(Background Subtraction)是一种用于视频分析的技术,主要用于检测和分割前景物体(即移动物体),以从连续的视频帧中分离出背景部分。这种方法基于一个假设:视频中的大部分区域在大多数时间内是相对静止的,这些区域被视为背景;而前景则是相对于背景发生移动的对象。

成员函数apply()

计算一个前景掩码。

函数原型

cpp 复制代码
virtual void cv::BackgroundSubtractor::apply	
(
	InputArray 	image,
	OutputArray 	fgmask,
	double 	learningRate = -1 
)		

参数

  • 参数image 下一个视频帧。
  • 参数fgmask 输出的前景掩码,作为一个8位的二值图像。
  • 参数learningRate 一个介于0和1之间的值,表示背景模型的学习速度。负参数值使算法使用某种自动选择的学习率。0意味着背景模型完全不更新,1意味着背景模型完全从最后一帧重新初始化

代码示例

cpp 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>

int main( int argc, char** argv )
{
    // 创建一个背景减除器实例
    cv::Ptr< cv::BackgroundSubtractor > pBackSub = cv::createBackgroundSubtractorMOG2();

    // 设置参数
    
    // 打开视频文件
    cv::VideoCapture capture( 0 );
    if ( !capture.isOpened() )
    {
        std::cerr << "Failed to open video file." << std::endl;
        return -1;
    }

    // 读取每一帧并处理
    cv::Mat frame, fgMask;
    while ( capture.read( frame ) )
    {
        // 应用背景减除
        pBackSub->apply( frame, fgMask );

        // 显示结果
        cv::imshow( "Frame", frame );
        cv::imshow( "FG Mask", fgMask );

        // 按 'q' 键退出
        if ( cv::waitKey( 30 ) == 'q' )
        {
            break;
        }
    }

    // 释放资源
    capture.release();
    cv::destroyAllWindows();

    return 0;
}

运行结果

视频中那个玉竹是在摆动的状态

相关推荐
HuggingFace3 小时前
Hugging Face 开源机器人 Reachy Mini 开启预定
人工智能
企企通采购云平台4 小时前
「天元宠物」×企企通,加速数智化升级,“链”接萌宠消费新蓝海
大数据·人工智能·宠物
超级小忍4 小时前
Spring AI ETL Pipeline使用指南
人工智能·spring
张较瘦_4 小时前
[论文阅读] 人工智能 | 读懂Meta-Fair:让LLM摆脱偏见的自动化测试新方法
论文阅读·人工智能
一只小灿灿5 小时前
前端计算机视觉:使用 OpenCV.js 在浏览器中实现图像处理
前端·opencv·计算机视觉
巴伦是只猫5 小时前
【机器学习笔记 Ⅲ】4 特征选择
人工智能·笔记·机器学习
好心的小明5 小时前
【王树森推荐系统】召回11:地理位置召回、作者召回、缓存召回
人工智能·缓存·推荐系统·推荐算法
lishaoan775 小时前
使用tensorflow的线性回归的例子(十二)
人工智能·tensorflow·线性回归·戴明回归
二DUAN帝6 小时前
UE实现路径回放、自动驾驶功能简记
人工智能·websocket·机器学习·ue5·自动驾驶·ue4·cesiumforue
zskj_zhyl6 小时前
AI健康小屋“15分钟服务圈”:如何重构社区健康生态?
大数据·人工智能·物联网