OpenCV视觉分析之运动分析背景减除类BackgroundSubtractor的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

背景/前景分割的基类:

这个类仅用于定义整个背景/前景分割算法家族的共同接口

cv::BackgroundSubtractor 是 OpenCV 中用于背景减除的基类。它定义了一个接口,用于实现各种背景减除算法。这个基类包含了所有背景减除算法共同的操作,如初始化、处理帧以获得前景掩码、更新背景模型等。

背景减除(Background Subtraction)是一种用于视频分析的技术,主要用于检测和分割前景物体(即移动物体),以从连续的视频帧中分离出背景部分。这种方法基于一个假设:视频中的大部分区域在大多数时间内是相对静止的,这些区域被视为背景;而前景则是相对于背景发生移动的对象。

成员函数apply()

计算一个前景掩码。

函数原型

cpp 复制代码
virtual void cv::BackgroundSubtractor::apply	
(
	InputArray 	image,
	OutputArray 	fgmask,
	double 	learningRate = -1 
)		

参数

  • 参数image 下一个视频帧。
  • 参数fgmask 输出的前景掩码,作为一个8位的二值图像。
  • 参数learningRate 一个介于0和1之间的值,表示背景模型的学习速度。负参数值使算法使用某种自动选择的学习率。0意味着背景模型完全不更新,1意味着背景模型完全从最后一帧重新初始化

代码示例

cpp 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>

int main( int argc, char** argv )
{
    // 创建一个背景减除器实例
    cv::Ptr< cv::BackgroundSubtractor > pBackSub = cv::createBackgroundSubtractorMOG2();

    // 设置参数
    
    // 打开视频文件
    cv::VideoCapture capture( 0 );
    if ( !capture.isOpened() )
    {
        std::cerr << "Failed to open video file." << std::endl;
        return -1;
    }

    // 读取每一帧并处理
    cv::Mat frame, fgMask;
    while ( capture.read( frame ) )
    {
        // 应用背景减除
        pBackSub->apply( frame, fgMask );

        // 显示结果
        cv::imshow( "Frame", frame );
        cv::imshow( "FG Mask", fgMask );

        // 按 'q' 键退出
        if ( cv::waitKey( 30 ) == 'q' )
        {
            break;
        }
    }

    // 释放资源
    capture.release();
    cv::destroyAllWindows();

    return 0;
}

运行结果

视频中那个玉竹是在摆动的状态

相关推荐
橙露1 天前
CGO调用OpenCV实现多角度模板匹配性能分析
人工智能·opencv·计算机视觉
超龄超能程序猿1 天前
X-AnyLabeling 全功能操作指南
运维·yolo·计算机视觉
STLearner1 天前
MM 2025 | 时间序列(Time Series)论文总结【预测,分类,异常检测,医疗时序】
论文阅读·人工智能·深度学习·神经网络·算法·机器学习·数据挖掘
光羽隹衡1 天前
计算机视觉--Opencv(边缘检测)
人工智能·opencv·计算机视觉
春日见1 天前
Git 相关操作大全
linux·人工智能·驱动开发·git·算法·机器学习
Kingfar_11 天前
高速列车驾驶员情境意识动态建模及生理反应机制研究
人工智能·机器学习
小二·1 天前
Python Web 开发进阶实战:AI 原生硬件接口 —— 在 Flask + MicroPython 中构建边缘智能设备控制平台
前端·人工智能·python
TTGGGFF1 天前
深度实战:在 GPU 环境下一键部署 Jimeng 中文文生图交互系统
人工智能·交互·图片生成
集和诚JHCTECH1 天前
精准采摘背后的大脑:BRAV-7135边缘计算解决方案赋能智能农业新时代
人工智能·嵌入式硬件
deephub1 天前
用 PydanticAI 让 LLM 输出变成可信赖的 Python 对象
人工智能·python·大语言模型·agent