关于Deformable Convolution:自我整理一次可变形卷积

Deformable Conv用得很多,据我预期来说,可变形卷积就是让原来kernel中"定死"的参数变成"可学习的"参数,这样kernel的形状就会变来变去,最终提取出来的feature形状也更加多样

参考文章:CNN卷积神经网络之DCN(Deformable Convolutional Networks、Deformable ConvNets v2)_dcn神经网络-CSDN博客

参考视频:(这个博主值得关注哦) Enzo_Mi的个人空间-Enzo_Mi个人主页-哔哩哔哩视频 (bilibili.com)

(一)使用位置

并不是所有的卷积都一股脑地换成可行变卷积就是好的,在提取到一些语义特征后使用形变卷积效果会更好一点,一般来说是网络靠后的几层。

(二)弊端

因为可学习的参数增加了,所以 参数量会稍微增多 、 运行速度也会略微变慢

(三)其他

等待实践。。。

相关推荐
光泽雨11 小时前
检测阈值 匹配阈值分析 金字塔
图像处理·人工智能·计算机视觉·机器视觉·smart3
sali-tec11 小时前
C# 基于OpenCv的视觉工作流-章22-Harris角点
图像处理·人工智能·opencv·算法·计算机视觉
学电子她就能回来吗12 小时前
深度学习速成:损失函数与反向传播
人工智能·深度学习·学习·计算机视觉·github
光羽隹衡13 小时前
计算机视觉——Opencv(图像拼接)
人工智能·opencv·计算机视觉
爱打代码的小林14 小时前
基于 MediaPipe 实现实时面部关键点检测
python·opencv·计算机视觉
深蓝电商API16 小时前
图片验证码识别:pytesseract+opencv入门
人工智能·opencv·计算机视觉·pytesseract
Sagittarius_A*18 小时前
特征检测:SIFT 与 SURF(尺度不变 / 加速稳健特征)【计算机视觉】
图像处理·人工智能·python·opencv·计算机视觉·surf·sift
水中加点糖1 天前
小白都能看懂的——车牌检测与识别(最新版YOLO26快速入门)
人工智能·yolo·目标检测·计算机视觉·ai·车牌识别·lprnet
ccLianLian1 天前
计算机基础·cs336·损失函数,优化器,调度器,数据处理和模型加载保存
人工智能·深度学习·计算机视觉·transformer
happyprince1 天前
2026年02月08日热门论文
人工智能·深度学习·计算机视觉