关于Deformable Convolution:自我整理一次可变形卷积

Deformable Conv用得很多,据我预期来说,可变形卷积就是让原来kernel中"定死"的参数变成"可学习的"参数,这样kernel的形状就会变来变去,最终提取出来的feature形状也更加多样

参考文章:CNN卷积神经网络之DCN(Deformable Convolutional Networks、Deformable ConvNets v2)_dcn神经网络-CSDN博客

参考视频:(这个博主值得关注哦) Enzo_Mi的个人空间-Enzo_Mi个人主页-哔哩哔哩视频 (bilibili.com)

(一)使用位置

并不是所有的卷积都一股脑地换成可行变卷积就是好的,在提取到一些语义特征后使用形变卷积效果会更好一点,一般来说是网络靠后的几层。

(二)弊端

因为可学习的参数增加了,所以 参数量会稍微增多 、 运行速度也会略微变慢

(三)其他

等待实践。。。

相关推荐
只有左边一个小酒窝27 分钟前
(六)卷积神经网络:深度学习在计算机视觉中的应用
深度学习·计算机视觉·cnn
carpell2 小时前
【语义分割专栏】3:Segnet实战篇(附上完整可运行的代码pytorch)
人工智能·python·深度学习·计算机视觉·语义分割
栗克4 小时前
Halcon 图像预处理②
人工智能·计算机视觉·halcon
小Q小Q7 小时前
cmake编译LASzip和LAStools
人工智能·计算机视觉
不爱写代码的玉子13 小时前
HALCON透视矩阵
人工智能·深度学习·线性代数·算法·计算机视觉·矩阵·c#
sbc-study14 小时前
PCDF (Progressive Continuous Discrimination Filter)模块构建
人工智能·深度学习·计算机视觉
EasonZzzzzzz14 小时前
计算机视觉——相机标定
人工智能·数码相机·计算机视觉
春末的南方城市14 小时前
港科大&快手提出统一上下文视频编辑 UNIC,各种视频编辑任务一网打尽,还可进行多项任务组合!
人工智能·计算机视觉·stable diffusion·aigc·transformer
且慢.58916 小时前
Python_day47
python·深度学习·计算机视觉
Unpredictable22217 小时前
【VINS-Mono算法深度解析:边缘化策略、初始化与关键技术】
c++·笔记·算法·ubuntu·计算机视觉