关于Deformable Convolution:自我整理一次可变形卷积

Deformable Conv用得很多,据我预期来说,可变形卷积就是让原来kernel中"定死"的参数变成"可学习的"参数,这样kernel的形状就会变来变去,最终提取出来的feature形状也更加多样

参考文章:CNN卷积神经网络之DCN(Deformable Convolutional Networks、Deformable ConvNets v2)_dcn神经网络-CSDN博客

参考视频:(这个博主值得关注哦) Enzo_Mi的个人空间-Enzo_Mi个人主页-哔哩哔哩视频 (bilibili.com)

(一)使用位置

并不是所有的卷积都一股脑地换成可行变卷积就是好的,在提取到一些语义特征后使用形变卷积效果会更好一点,一般来说是网络靠后的几层。

(二)弊端

因为可学习的参数增加了,所以 参数量会稍微增多 、 运行速度也会略微变慢

(三)其他

等待实践。。。

相关推荐
z_mazin2 小时前
反爬虫机制中的验证码识别:类型、技术难点与应对策略
人工智能·计算机视觉·目标跟踪
jndingxin5 小时前
OpenCV 图形API(60)颜色空间转换-----将图像从 YUV 色彩空间转换为 RGB 色彩空间函数YUV2RGB()
人工智能·opencv·计算机视觉
知舟不叙5 小时前
OpenCV中的SIFT特征提取
人工智能·opencv·计算机视觉
__lost8 小时前
Python图像变清晰与锐化,调整对比度,高斯滤波除躁,卷积锐化,中值滤波钝化,神经网络变清晰
python·opencv·计算机视觉
欣然~8 小时前
借助 OpenCV 和 PyTorch 库,利用卷积神经网络提取图像边缘特征
人工智能·计算机视觉
豆豆9 小时前
day32 学习笔记
图像处理·笔记·opencv·学习·计算机视觉
白熊1889 小时前
【计算机视觉】CV实战项目 - 基于YOLOv5的人脸检测与关键点定位系统深度解析
人工智能·yolo·计算机视觉
硅谷秋水11 小时前
通过模仿学习实现机器人灵巧操作:综述(上)
人工智能·深度学习·机器学习·计算机视觉·语言模型·机器人
何大春12 小时前
【视频时刻检索】Text-Video Retrieval via Multi-Modal Hypergraph Networks 论文阅读
论文阅读·深度学习·神经网络·计算机视觉·视觉检测·论文笔记
猿饵块12 小时前
opencv--图像变换
人工智能·opencv·计算机视觉