深入理解Agent:从0实现function call

Function的调用时Agent实现很重要的一步,只有了解了这个原理才可以更好的创建Agent。

我将不使用任何langchain等框架或者coze等平台,从0开始构建一个可以调用function的Agent。

源代码已经上传github:github.com/astordu/age...

一、场景

Agent的目标:可以回答关于天气的问题。 用到的function:调用某地方的天气情况,并且反馈

流程: 1.思考: 用户输入问题,模型先对问题进行分析 2.行动: 如果问到了天气问题,则分析出需要调用的function以及function要传入的参数 3.响应:function返回后,将答案整理好回复给用户。

函数自定:

  1. 我们先定义一个获取天气的函数(属于Tools中的一个,这里用于演示,不做真实调用):

    python 复制代码
         def get_weather(location):
                 return "天气晴朗"
  2. 再定义一个大模型的发送信息的方法:

    ini 复制代码
     def send_messages(messages):
             response = client.chat.completions.create(
             model="deepseek-chat",
             messages=messages
             )
             return response.choices[0].message
    
     client = OpenAI(
             api_key="<你的deepseek的key>",
             base_url="https://api.deepseek.com",
     )

二、设计思路

从"用户提出问题"到"思考"到"响应"其实是调用了多次LLM模型。

所以我们要求模型按照顺序去调用LLM:

css 复制代码
你在运行一个"思考","工具调用","响应"循环。每次只运行一个阶段

1."思考"阶段:你要仔细思考用户的问题
2."工具调用阶段":选择可以调用的工具,并且输出对应工具需要的参数
3."响应"阶段:根据工具调用返回的影响,回复用户问题。

已有的工具如下:
get_weather:
e.g. get_weather:天津
返回天津的天气情况

Example:
question:天津的天气怎么样?
thought:我应该调用工具查询天津的天气情况
Action:
{
	"function_name":"get_response_time"
	"function_params":{
		"location":"天津"
	}
}
调用Action的结果:"天气晴朗"
Answer:天津的天气晴朗

上边的逻辑正好可以当作system的提示语:

ini 复制代码
system="""
	你在运行一个"思考","工具调用","响应"循环。每次只运行一个阶段
	
	1."思考"阶段:你要仔细思考用户的问题
	2."工具调用阶段":选择可以调用的工具,并且输出对应工具需要的参数
	3."响应"阶段:根据工具调用返回的影响,回复用户问题。
	
	已有的工具如下:
	get_weather:
	e.g. get_weather:天津
	返回天津的天气情况
	
	Example:
	question:天津的天气怎么样?
	thought:我应该调用工具查询天津的天气情况
	Action:
	{
		"function_name":"get_response_time"
		"function_params":{
			"location":"天津"
		}
	}
	调用Action的结果:"天气晴朗"
	Answer:天津的天气晴朗
"""

第一步,向模型提问一个问题

ini 复制代码
question="北京天气怎么样"

messages = [{"role": "system", "content": system_prompt},
{"role": "user", "content": question}]

message = send_messages(messages)
print(f"Model-1th>\n {message.content}")

返回值:

json 复制代码
Model-1th>
 thought:我应该调用工具查询北京的天气情况
Action:
{
        "function_name":"get_weather",
        "function_params":{
                "location":"北京"
        }
}

可以看出模型已经进行了思考,并且返回了可以调用的工具了

第二步,如果从"第一步"的返回值中可以提取调用工具的json

第三步,调用真实工具,获取真实结果(这里是伪代码)

scss 复制代码
    invoke_function(**function_name,**function_params)

第四步,将工具调用的结果追加到message中,一起给到模型,让它总结回答:

python 复制代码
messages.append({"role": "assistant", "content": f"调用Action的结果:{tianqi}"})
message = send_messages(messages)

print(f"Model-2th>\n {message.content}")

返回值:

shell 复制代码
Model-2th> 
北京今天的天气晴朗。

三、tools功能的演进

随着LLM调用工具的普及,这种调用方法集成在大模型api接口中就变得越重要。

大部分模型厂商已经支持了function call,下面是deepseek工具调用的一个例子[1]:

ini 复制代码
response = client.chat.completions.create(
	model="deepseek-chat",
	messages=messages,
	tools=tools
)

其中 tools是可以供模型选择的工具。

写在最后

从0开发写function的逻辑,需要让模型思考、观察、行动。其实这个流程的循环其实就是ReAct框架的原理。[2]

参考文章: [1] deepseek function文档: api-docs.deepseek.com/zh-cn/guide... [2]# 讓 LLM 更好用的方法:ReAct prompting: edge.aif.tw/application...

相关推荐
知来者逆3 小时前
Binoculars——分析证实大语言模型生成文本的检测和引用量按学科和国家明确显示了使用偏差的多样性和对内容类型的影响
人工智能·深度学习·语言模型·自然语言处理·llm·大语言模型
杀生丸学AI6 小时前
【三维重建】去除瞬态物体Distractor汇总
人工智能·大模型·aigc·三维重建·扩散模型·高斯泼溅·空间智能
几米哥10 小时前
如何构建高效的AI代理系统:LLM应用实践与最佳方案的深度解析
llm·aigc
测试者家园12 小时前
ChatGPT生成接口文档实践案例(二)
软件测试·chatgpt·llm·测试用例·测试图书·质量效能·用chatgpt做测试
WebCandy1 天前
EsChatPro 接入国内 DeepSeek 大模型
ai·aigc
云边有个稻草人2 天前
AIGC与娱乐产业:颠覆创意与生产的新力量
aigc·娱乐
猫头虎2 天前
新纪天工 开物焕彩:重大科技成就发布会参会感
人工智能·开源·aigc·开放原子·开源软件·gpu算力·agi
云起无垠2 天前
第79期 | GPTSecurity周报
gpt·aigc
Jeremy_lf2 天前
【生成模型之三】ControlNet & Latent Diffusion Models论文详解
人工智能·深度学习·stable diffusion·aigc·扩散模型
程序员X小鹿2 天前
羡慕了!小红书上3w+点赞的治愈系插图,用这个免费的AI工具,1分钟搞定!(附详细教程)
aigc