深入理解Agent:从0实现function call

Function的调用时Agent实现很重要的一步,只有了解了这个原理才可以更好的创建Agent。

我将不使用任何langchain等框架或者coze等平台,从0开始构建一个可以调用function的Agent。

源代码已经上传github:github.com/astordu/age...

一、场景

Agent的目标:可以回答关于天气的问题。 用到的function:调用某地方的天气情况,并且反馈

流程: 1.思考: 用户输入问题,模型先对问题进行分析 2.行动: 如果问到了天气问题,则分析出需要调用的function以及function要传入的参数 3.响应:function返回后,将答案整理好回复给用户。

函数自定:

  1. 我们先定义一个获取天气的函数(属于Tools中的一个,这里用于演示,不做真实调用):

    python 复制代码
         def get_weather(location):
                 return "天气晴朗"
  2. 再定义一个大模型的发送信息的方法:

    ini 复制代码
     def send_messages(messages):
             response = client.chat.completions.create(
             model="deepseek-chat",
             messages=messages
             )
             return response.choices[0].message
    
     client = OpenAI(
             api_key="<你的deepseek的key>",
             base_url="https://api.deepseek.com",
     )

二、设计思路

从"用户提出问题"到"思考"到"响应"其实是调用了多次LLM模型。

所以我们要求模型按照顺序去调用LLM:

css 复制代码
你在运行一个"思考","工具调用","响应"循环。每次只运行一个阶段

1."思考"阶段:你要仔细思考用户的问题
2."工具调用阶段":选择可以调用的工具,并且输出对应工具需要的参数
3."响应"阶段:根据工具调用返回的影响,回复用户问题。

已有的工具如下:
get_weather:
e.g. get_weather:天津
返回天津的天气情况

Example:
question:天津的天气怎么样?
thought:我应该调用工具查询天津的天气情况
Action:
{
	"function_name":"get_response_time"
	"function_params":{
		"location":"天津"
	}
}
调用Action的结果:"天气晴朗"
Answer:天津的天气晴朗

上边的逻辑正好可以当作system的提示语:

ini 复制代码
system="""
	你在运行一个"思考","工具调用","响应"循环。每次只运行一个阶段
	
	1."思考"阶段:你要仔细思考用户的问题
	2."工具调用阶段":选择可以调用的工具,并且输出对应工具需要的参数
	3."响应"阶段:根据工具调用返回的影响,回复用户问题。
	
	已有的工具如下:
	get_weather:
	e.g. get_weather:天津
	返回天津的天气情况
	
	Example:
	question:天津的天气怎么样?
	thought:我应该调用工具查询天津的天气情况
	Action:
	{
		"function_name":"get_response_time"
		"function_params":{
			"location":"天津"
		}
	}
	调用Action的结果:"天气晴朗"
	Answer:天津的天气晴朗
"""

第一步,向模型提问一个问题

ini 复制代码
question="北京天气怎么样"

messages = [{"role": "system", "content": system_prompt},
{"role": "user", "content": question}]

message = send_messages(messages)
print(f"Model-1th>\n {message.content}")

返回值:

json 复制代码
Model-1th>
 thought:我应该调用工具查询北京的天气情况
Action:
{
        "function_name":"get_weather",
        "function_params":{
                "location":"北京"
        }
}

可以看出模型已经进行了思考,并且返回了可以调用的工具了

第二步,如果从"第一步"的返回值中可以提取调用工具的json

第三步,调用真实工具,获取真实结果(这里是伪代码)

scss 复制代码
    invoke_function(**function_name,**function_params)

第四步,将工具调用的结果追加到message中,一起给到模型,让它总结回答:

python 复制代码
messages.append({"role": "assistant", "content": f"调用Action的结果:{tianqi}"})
message = send_messages(messages)

print(f"Model-2th>\n {message.content}")

返回值:

shell 复制代码
Model-2th> 
北京今天的天气晴朗。

三、tools功能的演进

随着LLM调用工具的普及,这种调用方法集成在大模型api接口中就变得越重要。

大部分模型厂商已经支持了function call,下面是deepseek工具调用的一个例子[1]:

ini 复制代码
response = client.chat.completions.create(
	model="deepseek-chat",
	messages=messages,
	tools=tools
)

其中 tools是可以供模型选择的工具。

写在最后

从0开发写function的逻辑,需要让模型思考、观察、行动。其实这个流程的循环其实就是ReAct框架的原理。[2]

参考文章: [1] deepseek function文档: api-docs.deepseek.com/zh-cn/guide... [2]# 讓 LLM 更好用的方法:ReAct prompting: edge.aif.tw/application...

相关推荐
仙人掌_lz38 分钟前
如何打造一款金融推理工具Financial Reasoning Workflow:WebUI+Ollama+Fin-R1+MCP/RAG
人工智能·搜索引擎·ai·金融·llm·rag·mcp
风雨中的小七1 小时前
解密prompt系列55.Agent Memory的工程实现 - Mem0 & LlamaIndex
llm·nlp
SpikeKing1 小时前
LLM - LlamaFactory 的大模型推理 踩坑记录
人工智能·llm·llamafactory
SpikeKing10 小时前
Server - 使用 Docker 配置 PyTorch 研发环境
pytorch·docker·llm
DisonTangor12 小时前
【小红书拥抱开源】小红书开源大规模混合专家模型——dots.llm1
人工智能·计算机视觉·开源·aigc
深科文库16 小时前
构建 MCP 服务器:第 3 部分 — 添加提示
服务器·python·chatgpt·langchain·prompt·aigc·agi
小马虎本人17 小时前
如果接口返回的数据特别慢?要怎么办?难道就要在当前页面一直等吗
前端·react.js·aigc
掘金安东尼18 小时前
字节-Trae、阿里-通义灵码、腾讯-CodeBuddy,为什么都在“卷”AI编码?
面试·llm·github
一只爱撸猫的程序猿18 小时前
构建一个简单的智能文档问答系统实例
数据库·spring boot·aigc
春末的南方城市21 小时前
Ctrl-Crash 助力交通安全:可控生成逼真车祸视频,防患于未然
人工智能·计算机视觉·自然语言处理·aigc·音视频