深入理解Agent:从0实现function call

Function的调用时Agent实现很重要的一步,只有了解了这个原理才可以更好的创建Agent。

我将不使用任何langchain等框架或者coze等平台,从0开始构建一个可以调用function的Agent。

源代码已经上传github:github.com/astordu/age...

一、场景

Agent的目标:可以回答关于天气的问题。 用到的function:调用某地方的天气情况,并且反馈

流程: 1.思考: 用户输入问题,模型先对问题进行分析 2.行动: 如果问到了天气问题,则分析出需要调用的function以及function要传入的参数 3.响应:function返回后,将答案整理好回复给用户。

函数自定:

  1. 我们先定义一个获取天气的函数(属于Tools中的一个,这里用于演示,不做真实调用):

    python 复制代码
         def get_weather(location):
                 return "天气晴朗"
  2. 再定义一个大模型的发送信息的方法:

    ini 复制代码
     def send_messages(messages):
             response = client.chat.completions.create(
             model="deepseek-chat",
             messages=messages
             )
             return response.choices[0].message
    
     client = OpenAI(
             api_key="<你的deepseek的key>",
             base_url="https://api.deepseek.com",
     )

二、设计思路

从"用户提出问题"到"思考"到"响应"其实是调用了多次LLM模型。

所以我们要求模型按照顺序去调用LLM:

css 复制代码
你在运行一个"思考","工具调用","响应"循环。每次只运行一个阶段

1."思考"阶段:你要仔细思考用户的问题
2."工具调用阶段":选择可以调用的工具,并且输出对应工具需要的参数
3."响应"阶段:根据工具调用返回的影响,回复用户问题。

已有的工具如下:
get_weather:
e.g. get_weather:天津
返回天津的天气情况

Example:
question:天津的天气怎么样?
thought:我应该调用工具查询天津的天气情况
Action:
{
	"function_name":"get_response_time"
	"function_params":{
		"location":"天津"
	}
}
调用Action的结果:"天气晴朗"
Answer:天津的天气晴朗

上边的逻辑正好可以当作system的提示语:

ini 复制代码
system="""
	你在运行一个"思考","工具调用","响应"循环。每次只运行一个阶段
	
	1."思考"阶段:你要仔细思考用户的问题
	2."工具调用阶段":选择可以调用的工具,并且输出对应工具需要的参数
	3."响应"阶段:根据工具调用返回的影响,回复用户问题。
	
	已有的工具如下:
	get_weather:
	e.g. get_weather:天津
	返回天津的天气情况
	
	Example:
	question:天津的天气怎么样?
	thought:我应该调用工具查询天津的天气情况
	Action:
	{
		"function_name":"get_response_time"
		"function_params":{
			"location":"天津"
		}
	}
	调用Action的结果:"天气晴朗"
	Answer:天津的天气晴朗
"""

第一步,向模型提问一个问题

ini 复制代码
question="北京天气怎么样"

messages = [{"role": "system", "content": system_prompt},
{"role": "user", "content": question}]

message = send_messages(messages)
print(f"Model-1th>\n {message.content}")

返回值:

json 复制代码
Model-1th>
 thought:我应该调用工具查询北京的天气情况
Action:
{
        "function_name":"get_weather",
        "function_params":{
                "location":"北京"
        }
}

可以看出模型已经进行了思考,并且返回了可以调用的工具了

第二步,如果从"第一步"的返回值中可以提取调用工具的json

第三步,调用真实工具,获取真实结果(这里是伪代码)

scss 复制代码
    invoke_function(**function_name,**function_params)

第四步,将工具调用的结果追加到message中,一起给到模型,让它总结回答:

python 复制代码
messages.append({"role": "assistant", "content": f"调用Action的结果:{tianqi}"})
message = send_messages(messages)

print(f"Model-2th>\n {message.content}")

返回值:

shell 复制代码
Model-2th> 
北京今天的天气晴朗。

三、tools功能的演进

随着LLM调用工具的普及,这种调用方法集成在大模型api接口中就变得越重要。

大部分模型厂商已经支持了function call,下面是deepseek工具调用的一个例子[1]:

ini 复制代码
response = client.chat.completions.create(
	model="deepseek-chat",
	messages=messages,
	tools=tools
)

其中 tools是可以供模型选择的工具。

写在最后

从0开发写function的逻辑,需要让模型思考、观察、行动。其实这个流程的循环其实就是ReAct框架的原理。[2]

参考文章: [1] deepseek function文档: api-docs.deepseek.com/zh-cn/guide... [2]# 讓 LLM 更好用的方法:ReAct prompting: edge.aif.tw/application...

相关推荐
正在走向自律2 分钟前
第二章-AIGC入门-开启AIGC音频探索之旅:从入门到实践(6/36)
人工智能·aigc·音视频·语音识别·ai音乐·ai 音频·智能语音助手
Trent19859 分钟前
影楼精修-智能修图Agent
图像处理·人工智能·计算机视觉·aigc
墨风如雪12 小时前
三十亿参数的小宇宙:Ovis-U1-3B,AI界的新晋“全能选手”!
aigc
CoderLiu14 小时前
用这个MCP,只给大模型一个figma链接就能直接导出图片,还能自动压缩上传?
前端·llm·mcp
精灵vector15 小时前
构建专家级SQL Agent交互
python·aigc·ai编程
莫大h17 小时前
Gemini-cli安装避坑指南
aigc·ai编程
程序员鱼皮18 小时前
用 AI 制作超长视频,保姆级教程!
google·程序员·aigc
智泊AI19 小时前
大语言模型LLM底层技术原理到底是什么?大型语言模型如何工作?
llm
moonless022219 小时前
🌈Transformer说人话版(二)位置编码 【持续更新ing】
人工智能·llm
小爷毛毛_卓寿杰19 小时前
基于大模型与知识图谱的对话引导意图澄清系统技术解析
人工智能·llm