基于yolov8的停车场空位检测系统,支持图像、视频和摄像实时检测【pytorch框架、python源码】

更多目标检测和图像分类识别项目可看我主页其他文章

功能演示:

基于yolov8的停车场空位检测系统,支持图像、视频和摄像实时检测【pytorch框架、python源码】_哔哩哔哩_bilibili

(一)简介

基于yolov8的停车场空位检测系统是在 PyTorch 框架之下得以实现的。这是一个完备的项目,涵盖了诸多方面,其中包括代码部分,精心整理的数据集,训练完备的模型权重,详实的模型训练记录,直观友好的 UI 界面以及各类重要的模型指标(如准确率、精确率、召回率等等)。

该系统的 UI 界面是通过 tkinter 设计并成功实现的。该项目可在windows、linux(ubuntu,centos)、mac系统下运行,可外接usb摄像头或直接用笔记本摄像头实现摄像实时检测。

该项目是在pycharm和anaconda搭建的虚拟环境执行,pycharm和anaconda安装和配置可观看教程:

windows保姆级的pycharm+anaconda搭建python虚拟环境_anaconda和pycharm保姆级下载及配置-CSDN博客

在Linux系统(Ubuntn, Centos)用pycharm+anaconda搭建python虚拟环境_linux pycharm-CSDN博客

(二)项目介绍

1. 项目结构
2.模型训练、验证

​该项目可以使用已经训练好的模型权重,也可以自己重新训练,自己训练也比较简单:

第一步:修改data/data.yaml中的数据集路径

第二步:模型训练,即运行train.py文件

第三步:模型验证,当模型训练完后,运行val.py文件

第四步:使用模型,即运行gui.py文件即可通过GUI界面来展示模型效果

2. 数据集

​​​

部分数据展示:

​​

3.GUI界面(技术栈:pyqt5+python)
a.GUI初始界面

​​​

b.图像检测界面
c.视频或摄像实时检测界面

4.模型训练和验证的一些指标及效果

(三)总结

以上即为整个项目的介绍,完整的项目包括代码,数据集,训练好的模型权重,模型训练记录,ui界面和各种模型指标等 。

若项目使用过程中出现问题,请及时交流!

相关推荐
爱学习的阿磊2 小时前
使用Fabric自动化你的部署流程
jvm·数据库·python
少云清3 小时前
【金融项目实战】7_接口测试 _代码实现接口测试(重点)
python·金融项目实战
深蓝电商API3 小时前
爬虫IP封禁后的自动切换与检测机制
爬虫·python
m0_550024633 小时前
持续集成/持续部署(CI/CD) for Python
jvm·数据库·python
B站_计算机毕业设计之家3 小时前
豆瓣电影数据采集分析推荐系统 | Python Vue Flask框架 LSTM Echarts多技术融合开发 毕业设计源码 计算机
vue.js·python·机器学习·flask·echarts·lstm·推荐算法
渣渣苏3 小时前
Langchain实战快速入门
人工智能·python·langchain
王锋(oxwangfeng)3 小时前
YOLOWorld 实现开集障碍物检测
yolo
lili-felicity3 小时前
CANN模型量化详解:从FP32到INT8的精度与性能平衡
人工智能·python
数据知道3 小时前
PostgreSQL实战:详解如何用Python优雅地从PG中存取处理JSON
python·postgresql·json
喵叔哟4 小时前
02-YOLO-v8-v9-v10工程差异对比
人工智能·yolo·机器学习