2-2(补充) opencv实战进阶系列 最大多边形识别

1、前言

书接上回,代码能够很好的把图像中的矩形都找出来,若我们只需要找到图像中最大的矩形,需要对上节的代码进行一些修改。

运行效果如下:

2、修改思路

在for遍历每个轮廓时,增加一个对轮廓面积的计算

area = cv2.contourArea(cnt)

然后将面积进行对比选出最大的轮廓:max_rect

python 复制代码
# 初始化变量来存储最大矩形的信息
max_area = 0
max_rect = None

for cnt in contours:
    approx = cv2.approxPolyDP(cnt, 0.01 * cv2.arcLength(cnt, True), True)
    if len(approx) == 4:
        # 计算轮廓的面积
        area = cv2.contourArea(cnt)
        if area > max_area:
            max_area = area
            max_rect = cnt

之后同上节内容一样,把轮廓以及相关文字显示出来

完整代码:

python 复制代码
import cv2

# 读取输入图像
img = cv2.imread('test4.png')

# 将图像转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 应用二值化将灰度图像转换为二进制图像
mask_gray = cv2.inRange(gray, 0, 251)

# 找到轮廓
contours, hierarchy = cv2.findContours(mask_gray, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
print("检测到的轮廓数量:", len(contours))

# 初始化变量来存储最大矩形的信息
max_area = 0
max_rect = None

for cnt in contours:
    approx = cv2.approxPolyDP(cnt, 0.01 * cv2.arcLength(cnt, True), True)
    if len(approx) == 4:
        # 计算轮廓的面积
        area = cv2.contourArea(cnt)
        if area > max_area:
            max_area = area
            max_rect = cnt

# 绘制最大的矩形
if max_rect is not None:
    img = cv2.drawContours(img, [max_rect], -1, (0, 170, 255), 3)

    # 计算矩形质心
    M = cv2.moments(max_rect)
    if M['m00'] != 0.0:
        x = int(M['m10'] / M['m00'])
        y = int(M['m01'] / M['m00'])
    cv2.putText(img, 'Largest Rectangle', (x, y), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 0), 2)

cv2.imshow("mask_gray", mask_gray)
cv2.imshow("Shapes", img)

cv2.waitKey(0)
cv2.destroyAllWindows()
相关推荐
siliconstorm.ai4 分钟前
OpenAI与微软“再造合作”:重组背后的资本与生态博弈
人工智能·microsoft
张较瘦_5 分钟前
[论文阅读] 告别“数量为王”:双轨道会议模型+LS,破解AI时代学术交流困局
论文阅读·人工智能
nju_spy21 分钟前
GPT 系列论文1-2 两阶段半监督 + zero-shot prompt
人工智能·gpt·nlp·大语言模型·zero-shot·transformer架构·半监督训练
芝麻开门-新起点21 分钟前
第30章 零售与电商AI应用
人工智能·零售
shuidaoyuxing26 分钟前
机器人检验报告包含内容
人工智能·机器人
南山二毛29 分钟前
机器人控制器开发(训练到Jetson本地部署)
人工智能·机器人
工藤学编程44 分钟前
零基础学AI大模型之AI大模型常见概念
人工智能
ACEEE12221 小时前
Stanford CS336 | Assignment 2 - FlashAttention-v2 Pytorch & Triotn实现
人工智能·pytorch·python·深度学习·机器学习·nlp·transformer
金井PRATHAMA1 小时前
认知语义学中的象似性对人工智能自然语言处理深层语义分析的影响与启示
人工智能·自然语言处理·知识图谱
陈敬雷-充电了么-CEO兼CTO1 小时前
突破多模态极限!InstructBLIP携指令微调革新视觉语言模型,X-InstructBLIP实现跨模态推理新高度
人工智能·自然语言处理·chatgpt·blip·clip·多模态大模型·gpt-5