2-2(补充) opencv实战进阶系列 最大多边形识别

1、前言

书接上回,代码能够很好的把图像中的矩形都找出来,若我们只需要找到图像中最大的矩形,需要对上节的代码进行一些修改。

运行效果如下:

2、修改思路

在for遍历每个轮廓时,增加一个对轮廓面积的计算

area = cv2.contourArea(cnt)

然后将面积进行对比选出最大的轮廓:max_rect

python 复制代码
# 初始化变量来存储最大矩形的信息
max_area = 0
max_rect = None

for cnt in contours:
    approx = cv2.approxPolyDP(cnt, 0.01 * cv2.arcLength(cnt, True), True)
    if len(approx) == 4:
        # 计算轮廓的面积
        area = cv2.contourArea(cnt)
        if area > max_area:
            max_area = area
            max_rect = cnt

之后同上节内容一样,把轮廓以及相关文字显示出来

完整代码:

python 复制代码
import cv2

# 读取输入图像
img = cv2.imread('test4.png')

# 将图像转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 应用二值化将灰度图像转换为二进制图像
mask_gray = cv2.inRange(gray, 0, 251)

# 找到轮廓
contours, hierarchy = cv2.findContours(mask_gray, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
print("检测到的轮廓数量:", len(contours))

# 初始化变量来存储最大矩形的信息
max_area = 0
max_rect = None

for cnt in contours:
    approx = cv2.approxPolyDP(cnt, 0.01 * cv2.arcLength(cnt, True), True)
    if len(approx) == 4:
        # 计算轮廓的面积
        area = cv2.contourArea(cnt)
        if area > max_area:
            max_area = area
            max_rect = cnt

# 绘制最大的矩形
if max_rect is not None:
    img = cv2.drawContours(img, [max_rect], -1, (0, 170, 255), 3)

    # 计算矩形质心
    M = cv2.moments(max_rect)
    if M['m00'] != 0.0:
        x = int(M['m10'] / M['m00'])
        y = int(M['m01'] / M['m00'])
    cv2.putText(img, 'Largest Rectangle', (x, y), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 0), 2)

cv2.imshow("mask_gray", mask_gray)
cv2.imshow("Shapes", img)

cv2.waitKey(0)
cv2.destroyAllWindows()
相关推荐
不去幼儿园1 小时前
【MARL】深入理解多智能体近端策略优化(MAPPO)算法与调参
人工智能·python·算法·机器学习·强化学习
想成为高手4991 小时前
生成式AI在教育技术中的应用:变革与创新
人工智能·aigc
YSGZJJ2 小时前
股指期货的套保策略如何精准选择和规避风险?
人工智能·区块链
无脑敲代码,bug漫天飞2 小时前
COR 损失函数
人工智能·机器学习
HPC_fac130520678163 小时前
以科学计算为切入点:剖析英伟达服务器过热难题
服务器·人工智能·深度学习·机器学习·计算机视觉·数据挖掘·gpu算力
安静读书5 小时前
Python解析视频FPS(帧率)、分辨率信息
python·opencv·音视频
小陈phd5 小时前
OpenCV从入门到精通实战(九)——基于dlib的疲劳监测 ear计算
人工智能·opencv·计算机视觉
Guofu_Liao7 小时前
大语言模型---LoRA简介;LoRA的优势;LoRA训练步骤;总结
人工智能·语言模型·自然语言处理·矩阵·llama
ZHOU_WUYI10 小时前
3.langchain中的prompt模板 (few shot examples in chat models)
人工智能·langchain·prompt
如若12310 小时前
主要用于图像的颜色提取、替换以及区域修改
人工智能·opencv·计算机视觉