2-2(补充) opencv实战进阶系列 最大多边形识别

1、前言

书接上回,代码能够很好的把图像中的矩形都找出来,若我们只需要找到图像中最大的矩形,需要对上节的代码进行一些修改。

运行效果如下:

2、修改思路

在for遍历每个轮廓时,增加一个对轮廓面积的计算

area = cv2.contourArea(cnt)

然后将面积进行对比选出最大的轮廓:max_rect

python 复制代码
# 初始化变量来存储最大矩形的信息
max_area = 0
max_rect = None

for cnt in contours:
    approx = cv2.approxPolyDP(cnt, 0.01 * cv2.arcLength(cnt, True), True)
    if len(approx) == 4:
        # 计算轮廓的面积
        area = cv2.contourArea(cnt)
        if area > max_area:
            max_area = area
            max_rect = cnt

之后同上节内容一样,把轮廓以及相关文字显示出来

完整代码:

python 复制代码
import cv2

# 读取输入图像
img = cv2.imread('test4.png')

# 将图像转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 应用二值化将灰度图像转换为二进制图像
mask_gray = cv2.inRange(gray, 0, 251)

# 找到轮廓
contours, hierarchy = cv2.findContours(mask_gray, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
print("检测到的轮廓数量:", len(contours))

# 初始化变量来存储最大矩形的信息
max_area = 0
max_rect = None

for cnt in contours:
    approx = cv2.approxPolyDP(cnt, 0.01 * cv2.arcLength(cnt, True), True)
    if len(approx) == 4:
        # 计算轮廓的面积
        area = cv2.contourArea(cnt)
        if area > max_area:
            max_area = area
            max_rect = cnt

# 绘制最大的矩形
if max_rect is not None:
    img = cv2.drawContours(img, [max_rect], -1, (0, 170, 255), 3)

    # 计算矩形质心
    M = cv2.moments(max_rect)
    if M['m00'] != 0.0:
        x = int(M['m10'] / M['m00'])
        y = int(M['m01'] / M['m00'])
    cv2.putText(img, 'Largest Rectangle', (x, y), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 0), 2)

cv2.imshow("mask_gray", mask_gray)
cv2.imshow("Shapes", img)

cv2.waitKey(0)
cv2.destroyAllWindows()
相关推荐
Jamence9 分钟前
多模态大语言模型arxiv论文略读(111)
论文阅读·人工智能·语言模型·自然语言处理·论文笔记
归去_来兮13 分钟前
图神经网络(GNN)模型的基本原理
大数据·人工智能·深度学习·图神经网络·gnn
爱吃饼干的熊猫16 分钟前
PlayDiffusion上线:AI语音编辑进入“无痕时代”
人工智能·语音识别
SelectDB技术团队25 分钟前
Apache Doris + MCP:Agent 时代的实时数据分析底座
人工智能·数据挖掘·数据分析·apache·mcp
Leinwin25 分钟前
微软推出SQL Server 2025技术预览版,深化人工智能应用集成
人工智能·microsoft
CareyWYR1 小时前
每周AI论文速递(2506202-250606)
人工智能
YYXZZ。。1 小时前
PyTorch——优化器(9)
pytorch·深度学习·计算机视觉
点云SLAM1 小时前
PyTorch 中contiguous函数使用详解和代码演示
人工智能·pytorch·python·3d深度学习·contiguous函数·张量内存布局优化·张量操作
小天才才1 小时前
【自然语言处理】大模型时代的数据标注(主动学习)
人工智能·机器学习·语言模型·自然语言处理
音程1 小时前
预训练语言模型T5-11B的简要介绍
人工智能·语言模型·自然语言处理