深度学习-1:逻辑回归和梯度下降

逻辑回归

逻辑回归是一个二分分类问题

比如判断一张图片中是否是猫就是一个二类分类问题

图像由像素值组成,要将图像输入模型,就将其变为一个向量,该向量存储三个通道上的所有像素值,若图像尺寸为64x64x3,则向量维度为12288

(x,y)表示一个样本, x是一个n维向量,y是该向量对应的标签,m是样本数量

样本数据也可以用矩阵表示,x在矩阵中以列的形式存储,矩阵维度为nxm,Y矩阵存储对应标签

逻辑回归实际上是一个学习算法,需要学习参数w和b

获得y_hat = w.T*x+b

我们想要得到该输入是猫图的概率,也就是希望y_hat是一个0-1之间的值,但w.T*x+b所得值往往不为0-1之间的概率,所以使用sigmoid函数对w.T*x+b进行变换,输出一个概率值,w.T*x+b越大,输出概率越接近于1

l表示单个样本损失,J表示整个训练集的总损失,即成本函数,用于衡量W和b的效果

学习算法实际上就是要找到合适的w和b使J最小

学习算法旨在学习到合适的w和b使J获得最小值,对w和b进行初始化后,利用梯度下降法对w和b进行更新,以获得最小的J值

求成本函数J对于参数的导数,即该点处的斜率,方向总是指向J的最小值

以下图为例,将使J值最小的W值成为Wmin

当W>Wmin时,导数值即斜率大于0,利用梯度法对W进行更新,W会变小

当W<Wmin时,导数值即斜率小于0,利用梯度法对W进行更新,W会变大

都会往取得最小值的地方进行更新

以该直线为例,fa对a的导数为3,意思是当a变化任意值,fa都会以三倍的速率进行变化

计算图反向传播,最终的输出J可对流程图中的任何变量求导

在求导过程中有中间变量,则使用链式法则进行求导

在python编程中,dJ/da 直接写成da

单个样本的一次梯度下降

多样本的梯度下降

J,dw1,dw2,db作为累加器,记录一次迭代中多个样本损失,梯度总和,然后求这些值的平均值,对参数进行更新

相关推荐
狂小虎1 分钟前
亲测解决self.transform is not exist
python·深度学习
Fxrain5 分钟前
[深度学习]搭建开发平台及Tensor基础
人工智能·深度学习
一叶知秋秋1 小时前
python学习day39
人工智能·深度学习·学习
weixin_448781622 小时前
DenseNet算法 实现乳腺癌识别
pytorch·深度学习·神经网络
zzc9213 小时前
MATLAB仿真生成无线通信网络拓扑推理数据集
开发语言·网络·数据库·人工智能·python·深度学习·matlab
编程有点难3 小时前
Python训练打卡Day43
开发语言·python·深度学习
2301_805054563 小时前
Python训练营打卡Day48(2025.6.8)
pytorch·python·深度学习
Lucky-Niu3 小时前
解决transformers.adapters import AdapterConfig 报错的问题
人工智能·深度学习
保持学习ing4 小时前
Spring注解开发
java·深度学习·spring·框架
春末的南方城市5 小时前
中山大学&美团&港科大提出首个音频驱动多人对话视频生成MultiTalk,输入一个音频和提示,即可生成对应唇部、音频交互视频。
人工智能·python·深度学习·计算机视觉·transformer