深度学习-1:逻辑回归和梯度下降

逻辑回归

逻辑回归是一个二分分类问题

比如判断一张图片中是否是猫就是一个二类分类问题

图像由像素值组成,要将图像输入模型,就将其变为一个向量,该向量存储三个通道上的所有像素值,若图像尺寸为64x64x3,则向量维度为12288

(x,y)表示一个样本, x是一个n维向量,y是该向量对应的标签,m是样本数量

样本数据也可以用矩阵表示,x在矩阵中以列的形式存储,矩阵维度为nxm,Y矩阵存储对应标签

逻辑回归实际上是一个学习算法,需要学习参数w和b

获得y_hat = w.T*x+b

我们想要得到该输入是猫图的概率,也就是希望y_hat是一个0-1之间的值,但w.T*x+b所得值往往不为0-1之间的概率,所以使用sigmoid函数对w.T*x+b进行变换,输出一个概率值,w.T*x+b越大,输出概率越接近于1

l表示单个样本损失,J表示整个训练集的总损失,即成本函数,用于衡量W和b的效果

学习算法实际上就是要找到合适的w和b使J最小

学习算法旨在学习到合适的w和b使J获得最小值,对w和b进行初始化后,利用梯度下降法对w和b进行更新,以获得最小的J值

求成本函数J对于参数的导数,即该点处的斜率,方向总是指向J的最小值

以下图为例,将使J值最小的W值成为Wmin

当W>Wmin时,导数值即斜率大于0,利用梯度法对W进行更新,W会变小

当W<Wmin时,导数值即斜率小于0,利用梯度法对W进行更新,W会变大

都会往取得最小值的地方进行更新

以该直线为例,fa对a的导数为3,意思是当a变化任意值,fa都会以三倍的速率进行变化

计算图反向传播,最终的输出J可对流程图中的任何变量求导

在求导过程中有中间变量,则使用链式法则进行求导

在python编程中,dJ/da 直接写成da

单个样本的一次梯度下降

多样本的梯度下降

J,dw1,dw2,db作为累加器,记录一次迭代中多个样本损失,梯度总和,然后求这些值的平均值,对参数进行更新

相关推荐
hyshhhh21 小时前
【算法岗面试题】深度学习中如何防止过拟合?
网络·人工智能·深度学习·神经网络·算法·计算机视觉
Listennnn21 小时前
优雅的理解神经网络中的“分段线性单元”,解剖前向和反向传播
人工智能·深度学习·神经网络
牙牙要健康1 天前
【目标检测】【深度学习】【Pytorch版本】YOLOV3模型算法详解
pytorch·深度学习·目标检测
Scc_hy1 天前
强化学习_Paper_1988_Learning to predict by the methods of temporal differences
人工智能·深度学习·算法
誉鏐1 天前
从零开始设计Transformer模型(1/2)——剥离RNN,保留Attention
人工智能·深度学习·transformer
神经星星1 天前
无需预对齐即可消除批次效应,东京大学团队开发深度学习框架STAIG,揭示肿瘤微环境中的详细基因信息
人工智能·深度学习·机器学习
程序员Linc1 天前
写给新人的深度学习扫盲贴:向量与矩阵
人工智能·深度学习·矩阵·向量
补三补四1 天前
机器学习-聚类分析算法
人工智能·深度学习·算法·机器学习
荷包蛋蛋怪1 天前
【北京化工大学】 神经网络与深度学习 实验6 MATAR图像分类
人工智能·深度学习·神经网络·opencv·机器学习·计算机视觉·分类
贤小二AI1 天前
贤小二c#版Yolov5 yolov8 yolov10 yolov11自动标注工具 + 免python环境 GPU一键训练包
人工智能·深度学习·yolo