深度学习-1:逻辑回归和梯度下降

逻辑回归

逻辑回归是一个二分分类问题

比如判断一张图片中是否是猫就是一个二类分类问题

图像由像素值组成,要将图像输入模型,就将其变为一个向量,该向量存储三个通道上的所有像素值,若图像尺寸为64x64x3,则向量维度为12288

(x,y)表示一个样本, x是一个n维向量,y是该向量对应的标签,m是样本数量

样本数据也可以用矩阵表示,x在矩阵中以列的形式存储,矩阵维度为nxm,Y矩阵存储对应标签

逻辑回归实际上是一个学习算法,需要学习参数w和b

获得y_hat = w.T*x+b

我们想要得到该输入是猫图的概率,也就是希望y_hat是一个0-1之间的值,但w.T*x+b所得值往往不为0-1之间的概率,所以使用sigmoid函数对w.T*x+b进行变换,输出一个概率值,w.T*x+b越大,输出概率越接近于1

l表示单个样本损失,J表示整个训练集的总损失,即成本函数,用于衡量W和b的效果

学习算法实际上就是要找到合适的w和b使J最小

学习算法旨在学习到合适的w和b使J获得最小值,对w和b进行初始化后,利用梯度下降法对w和b进行更新,以获得最小的J值

求成本函数J对于参数的导数,即该点处的斜率,方向总是指向J的最小值

以下图为例,将使J值最小的W值成为Wmin

当W>Wmin时,导数值即斜率大于0,利用梯度法对W进行更新,W会变小

当W<Wmin时,导数值即斜率小于0,利用梯度法对W进行更新,W会变大

都会往取得最小值的地方进行更新

以该直线为例,fa对a的导数为3,意思是当a变化任意值,fa都会以三倍的速率进行变化

计算图反向传播,最终的输出J可对流程图中的任何变量求导

在求导过程中有中间变量,则使用链式法则进行求导

在python编程中,dJ/da 直接写成da

单个样本的一次梯度下降

多样本的梯度下降

J,dw1,dw2,db作为累加器,记录一次迭代中多个样本损失,梯度总和,然后求这些值的平均值,对参数进行更新

相关推荐
小关会打代码10 小时前
深度学习之YOLO系列YOLOv1
人工智能·深度学习·yolo
一车小面包10 小时前
Transformer Decoder 中序列掩码(Sequence Mask / Look-ahead Mask)
人工智能·深度学习·transformer
渡我白衣12 小时前
深度学习入门(一)——从神经元到损失函数,一步步理解前向传播(下)
人工智能·深度学习·神经网络
小虎鲸0013 小时前
PyTorch的安装与使用
人工智能·pytorch·python·深度学习
CM莫问14 小时前
推荐算法之粗排
深度学习·算法·机器学习·数据挖掘·排序算法·推荐算法·粗排
ccut 第一混16 小时前
c# 使用yolov5模型
人工智能·深度学习
七元权16 小时前
论文阅读-FoundationStereo
论文阅读·深度学习·计算机视觉·零样本·基础模型·双目深度估计
智驱力人工智能16 小时前
使用手机检测的智能视觉分析技术与应用 加油站使用手机 玩手机检测
深度学习·算法·目标检测·智能手机·视觉检测·边缘计算
姚瑞南17 小时前
【AI 风向标】四种深度学习算法(CNN、RNN、GAN、RL)的通俗解释
人工智能·深度学习·算法
渡我白衣17 小时前
深度学习入门(一)——从神经元到损失函数,一步步理解前向传播(上)
人工智能·深度学习·学习