SparkSQL整合Hive

spark-sql可以直接使用hive的元数据

1、环境搭建如下:

java 复制代码
## 1、启动hive的元数据服务

```shell
# 1、修改hive的配置文件
cd /usr/local/soft/hive-3.1.3/conf

# 2、增加配置
vim hive-site.xml

<property>
<name>hive.metastore.uris</name>
<value>thrift://master:9083</value>
</property>

# 3、启动hive元数据服务
nohup  hive --service metastore >> metastore.log 2>&1 &
```

## 2、将hive的配置文件同步到spark conf目录下

```sql
cp hive-site.xml /usr/local/soft/spark-3.1.3/conf/
```

### 3、在spark sql命令行中使用hive的表

```shell
#命令行启动spark-sql
spark-sql --master local

#指定分区数为1
set spark.sql.shuffle.partitions=1;

create external table if not exists students(
    id bigint comment '学生id'
    ,name string comment '学生姓名'
    ,age bigint comment '学生年龄'
    ,sex string comment '学生性别'
    ,clazz string comment '学生班级'
) comment '学生信息表'
row format delimited fields terminated by ','
stored as textfile 
location 'hdfs://master:9000/data/student';

select clazz,count(1) as num from students
group by clazz;
```

2、在代码中写spark-sql

java 复制代码
import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, Dataset, Row, SparkSession}

object Demo1DataFrame {
  def main(args: Array[String]): Unit = {

    //1、创建spark sql环境
    val spark: SparkSession = SparkSession
      .builder()
      .master("local")
      .appName("df")
      //指定shuffle之后RDD的分区数
      .config("spark.sql.shuffle.partitions", 1)
      .getOrCreate()

    import spark.implicits._

    //2、读取数据
    //DataFrame:在RDD的基础上增加了表结构,为了写sql
    val studentDF: DataFrame = spark
      .read
      .format("csv")
      .option("sep", ",")
      .schema("id STRING,name STRING,age INT,sex STRING,clazz STRING")
      .load("data/students.txt")

    //查看数据
    studentDF.show()

    //创建临时视图
    studentDF.createOrReplaceTempView("students")

    //编写sql处理数据
    val clazzNumDF: DataFrame = spark.sql(
      """
        |select clazz,count(1) as num
        |from students
        |group by clazz
        |""".stripMargin)

    clazzNumDF.show()

    import org.apache.spark.sql.functions._
    //使用DSL处理数据
    val clazzNum: DataFrame = studentDF
      .groupBy("clazz")
      .agg(count("id") as "num")

    //保存结果
    clazzNum
      .write
      .format("csv")
      .option("sep", "\t")
    //.save("data/clazz_num")

    //使用RDD处理数据
    val kvDS: RDD[(String, Int)] = studentDF
      //转换成RDD
      .rdd
      .map {
        //DF中的每一行是一个ROW对象
        case Row(id, name, age, sex, clazz: String) => (clazz, 1)
      }

    kvDS
      .reduceByKey(_ + _)
      .foreach(println)

  }
}
相关推荐
XYiFfang4 小时前
【MYSQL】SQL学习指南:从常见错误到高级函数与正则表达式
sql·mysql·正则表达式·regexp_like·group_concat
十碗饭吃不饱6 小时前
sql报错:java.sql.SQLSyntaxErrorException: Unknown column ‘as0‘ in ‘where clause‘
java·数据库·sql
呆呆小金人7 小时前
SQL入门: HAVING用法全解析
大数据·数据库·数据仓库·sql·数据库开发·etl·etl工程师
Yana_Zeng11 小时前
win10安装spark3.1详细流程(小白用)
hadoop·windows·spark
l1t12 小时前
用parser_tools插件来解析SQL语句
数据库·sql·插件·duckdb
TDengine (老段)12 小时前
TDengine 数学函数 ABS() 用户手册
大数据·数据库·sql·物联网·时序数据库·tdengine·涛思数据
Hello.Reader15 小时前
Apache StreamPark 快速上手从一键安装到跑起第一个 Flink SQL 任务
sql·flink·apache
1024find16 小时前
Spark on k8s部署
大数据·运维·容器·spark·kubernetes
养生技术人1 天前
Oracle OCP认证考试题目详解082系列第57题
运维·数据库·sql·oracle·开闭原则
养生技术人1 天前
Oracle OCP认证考试题目详解082系列第53题
数据库·sql·oracle·database·开闭原则·ocp