【机器学习基础】nn.Dropout的用法

1.nn.Dropout用法一

一句话总结:Dropout的是为了防止过拟合而设置

  • 详解:
    1.Dropout是为了防止过拟合而设置的
    2.Dropout顾名思义有丢掉的意思
    3.nn.Dropout(p = 0.3) # 表示每个神经元有0.3的可能性不被激活
    4.Dropout只能用在训练部分而不能用在测试部分
    5.Dropout一般用在全连接神经网络映射层之后,如代码的nn.Linear(20, 30)之后

代码部分:

python 复制代码
class Dropout(nn.Module):
	def __init__(self):
		super(Dropout, self).__init__()
		self.linear = nn.Linear(20, 40)
		self.dropout = nn.Dropout(p = 0.3) # p=0.3表示下图(a)中的神经元有p = 0.3的概率不被激活

	def forward(self, inputs):
		out = self.linear(inputs)
		out = self.dropout(out)
		return out

net = Dropout()
# Dropout只能用在train而不能用在test	

2.nn.Dropout用法二

python 复制代码
import torch
import torch.nn as nn

a = torch.randn(4, 4)
print(a)
"""
tensor([[ 1.2615, -0.6423, -0.4142,  1.2982],
        [ 0.2615,  1.3260, -1.1333, -1.6835],
        [ 0.0370, -1.0904,  0.5964, -0.1530],
        [ 1.1799, -0.3718,  1.7287, -1.5651]])
"""
dropout = nn.Dropout()
b = dropout(a)
print(b)
"""
tensor([[ 2.5230, -0.0000, -0.0000,  2.5964],
        [ 0.0000,  0.0000, -0.0000, -0.0000],
        [ 0.0000, -0.0000,  1.1928, -0.3060],
        [ 0.0000, -0.7436,  0.0000, -3.1303]])
"""

由以上代码可知Dropout还可以将部分tensor中的值置为0

https://blog.csdn.net/weixin_47050107/article/details/122722516

相关推荐
后端小肥肠2 分钟前
18条作品狂揽390万赞?我用Coze破解了“情绪放大镜”的流量密码
人工智能·aigc·coze
小鸡吃米…1 小时前
机器学习中的回归分析
人工智能·python·机器学习·回归
程序新视界1 小时前
为什么不建议基于Multi-Agent来构建Agent工程?
人工智能·后端·agent
AI360labs_atyun1 小时前
上海打出“开源”国际牌!2025重磅新政
人工智能·科技·学习·ai·开源
沛沛老爹1 小时前
Java泛型擦除:原理、实践与应对策略
java·开发语言·人工智能·企业开发·发展趋势·技术原理
Deepoch1 小时前
Deepoc具身模型:破解居家机器人“需求理解”难题
大数据·人工智能·机器人·具身模型·deepoc
AiTop1001 小时前
英伟达Rubin芯片提前量产,物理AI“ChatGPT 时刻” 降临
人工智能·chatgpt
阿正的梦工坊1 小时前
Git Rebase 是什么?为什么需要它?
人工智能·git
檐下翻书1732 小时前
法律文书自动生成与逻辑校验
人工智能