【机器学习基础】nn.Dropout的用法

1.nn.Dropout用法一

一句话总结:Dropout的是为了防止过拟合而设置

  • 详解:
    1.Dropout是为了防止过拟合而设置的
    2.Dropout顾名思义有丢掉的意思
    3.nn.Dropout(p = 0.3) # 表示每个神经元有0.3的可能性不被激活
    4.Dropout只能用在训练部分而不能用在测试部分
    5.Dropout一般用在全连接神经网络映射层之后,如代码的nn.Linear(20, 30)之后

代码部分:

python 复制代码
class Dropout(nn.Module):
	def __init__(self):
		super(Dropout, self).__init__()
		self.linear = nn.Linear(20, 40)
		self.dropout = nn.Dropout(p = 0.3) # p=0.3表示下图(a)中的神经元有p = 0.3的概率不被激活

	def forward(self, inputs):
		out = self.linear(inputs)
		out = self.dropout(out)
		return out

net = Dropout()
# Dropout只能用在train而不能用在test	

2.nn.Dropout用法二

python 复制代码
import torch
import torch.nn as nn

a = torch.randn(4, 4)
print(a)
"""
tensor([[ 1.2615, -0.6423, -0.4142,  1.2982],
        [ 0.2615,  1.3260, -1.1333, -1.6835],
        [ 0.0370, -1.0904,  0.5964, -0.1530],
        [ 1.1799, -0.3718,  1.7287, -1.5651]])
"""
dropout = nn.Dropout()
b = dropout(a)
print(b)
"""
tensor([[ 2.5230, -0.0000, -0.0000,  2.5964],
        [ 0.0000,  0.0000, -0.0000, -0.0000],
        [ 0.0000, -0.0000,  1.1928, -0.3060],
        [ 0.0000, -0.7436,  0.0000, -3.1303]])
"""

由以上代码可知Dropout还可以将部分tensor中的值置为0

https://blog.csdn.net/weixin_47050107/article/details/122722516

相关推荐
进击切图仔10 分钟前
GraspNet 训练集下载、解释和整理
人工智能·pytorch·conda
sensen_kiss10 分钟前
INT301 Bio-computation 生物计算(神经网络)Pt.9 自我组织特征映射(Self-Organizing Fearure Map)
人工智能·深度学习·神经网络·机器学习
小毅&Nora11 分钟前
【人工智能】【AI外呼】 ③ 从骚扰电话到智能语音机器人:技术架构、行业生态与工程实践
人工智能·架构·智能外呼机器人
霍格沃兹测试开发学社-小明16 分钟前
测试开发技术路线全新升级:在云原生与AI时代构建核心竞争力
大数据·人工智能·云原生
jinxinyuuuus19 分钟前
TikTok Watermark Remover:用户行为模拟、动态Token认证与视频流的去噪
网络·人工智能·计算机视觉·架构
说私域23 分钟前
基于链动2+1模式AI智能名片S2B2C商城小程序的微商运营内容研究
大数据·人工智能·小程序
free-elcmacom24 分钟前
机器学习项目实战——鸢尾花大作战
人工智能·机器学习
一尘之中25 分钟前
冰海通航的科技密码:葫芦岛港的破冰实践与智慧港口建设
人工智能·科技·ai写作
longze_726 分钟前
Uigenius:革新 UI/UX 设计的 AI 利器
人工智能·ui·ai·ux·prototype·uigenius
新智元26 分钟前
30 年数学难题,AI 仅 6 小时告破!陶哲轩:ChatGPT 们都失败了
人工智能·openai