【机器学习基础】nn.Dropout的用法

1.nn.Dropout用法一

一句话总结:Dropout的是为了防止过拟合而设置

  • 详解:
    1.Dropout是为了防止过拟合而设置的
    2.Dropout顾名思义有丢掉的意思
    3.nn.Dropout(p = 0.3) # 表示每个神经元有0.3的可能性不被激活
    4.Dropout只能用在训练部分而不能用在测试部分
    5.Dropout一般用在全连接神经网络映射层之后,如代码的nn.Linear(20, 30)之后

代码部分:

python 复制代码
class Dropout(nn.Module):
	def __init__(self):
		super(Dropout, self).__init__()
		self.linear = nn.Linear(20, 40)
		self.dropout = nn.Dropout(p = 0.3) # p=0.3表示下图(a)中的神经元有p = 0.3的概率不被激活

	def forward(self, inputs):
		out = self.linear(inputs)
		out = self.dropout(out)
		return out

net = Dropout()
# Dropout只能用在train而不能用在test	

2.nn.Dropout用法二

python 复制代码
import torch
import torch.nn as nn

a = torch.randn(4, 4)
print(a)
"""
tensor([[ 1.2615, -0.6423, -0.4142,  1.2982],
        [ 0.2615,  1.3260, -1.1333, -1.6835],
        [ 0.0370, -1.0904,  0.5964, -0.1530],
        [ 1.1799, -0.3718,  1.7287, -1.5651]])
"""
dropout = nn.Dropout()
b = dropout(a)
print(b)
"""
tensor([[ 2.5230, -0.0000, -0.0000,  2.5964],
        [ 0.0000,  0.0000, -0.0000, -0.0000],
        [ 0.0000, -0.0000,  1.1928, -0.3060],
        [ 0.0000, -0.7436,  0.0000, -3.1303]])
"""

由以上代码可知Dropout还可以将部分tensor中的值置为0

https://blog.csdn.net/weixin_47050107/article/details/122722516

相关推荐
晓翔仔33 分钟前
【深度实战】Agentic AI 安全攻防指南:基于 CSA 红队测试手册的 12 类风险完整解析
人工智能·安全·ai·ai安全
百家方案1 小时前
2026年数据治理整体解决方案 - 全1066页下载
大数据·人工智能·数据治理
北京耐用通信1 小时前
工业自动化中耐达讯自动化Profibus光纤链路模块连接RFID读写器的应用
人工智能·科技·物联网·自动化·信息与通信
小韩博2 小时前
一篇文章讲清AI核心概念之(LLM、Agent、MCP、Skills) -- 从解决问题的角度来说明
人工智能
沃达德软件3 小时前
人工智能治安管控系统
图像处理·人工智能·深度学习·目标检测·计算机视觉·目标跟踪·视觉检测
高工智能汽车3 小时前
爱芯元智通过港交所聆讯,智能汽车芯片市场格局加速重构
人工智能·重构·汽车
大力财经3 小时前
悬架、底盘、制动被同时重构,星空计划想把“驾驶”变成一种系统能力
人工智能
梁下轻语的秋缘4 小时前
Prompt工程核心指南:从入门到精通,让AI精准响应你的需求
大数据·人工智能·prompt
FreeBuf_4 小时前
ChatGPT引用马斯克AI生成的Grokipedia是否陷入“内容陷阱“?
人工智能·chatgpt
福客AI智能客服4 小时前
工单智转:电商智能客服与客服AI系统重构售后服务效率
大数据·人工智能