【机器学习基础】nn.Dropout的用法

1.nn.Dropout用法一

一句话总结:Dropout的是为了防止过拟合而设置

  • 详解:
    1.Dropout是为了防止过拟合而设置的
    2.Dropout顾名思义有丢掉的意思
    3.nn.Dropout(p = 0.3) # 表示每个神经元有0.3的可能性不被激活
    4.Dropout只能用在训练部分而不能用在测试部分
    5.Dropout一般用在全连接神经网络映射层之后,如代码的nn.Linear(20, 30)之后

代码部分:

python 复制代码
class Dropout(nn.Module):
	def __init__(self):
		super(Dropout, self).__init__()
		self.linear = nn.Linear(20, 40)
		self.dropout = nn.Dropout(p = 0.3) # p=0.3表示下图(a)中的神经元有p = 0.3的概率不被激活

	def forward(self, inputs):
		out = self.linear(inputs)
		out = self.dropout(out)
		return out

net = Dropout()
# Dropout只能用在train而不能用在test	

2.nn.Dropout用法二

python 复制代码
import torch
import torch.nn as nn

a = torch.randn(4, 4)
print(a)
"""
tensor([[ 1.2615, -0.6423, -0.4142,  1.2982],
        [ 0.2615,  1.3260, -1.1333, -1.6835],
        [ 0.0370, -1.0904,  0.5964, -0.1530],
        [ 1.1799, -0.3718,  1.7287, -1.5651]])
"""
dropout = nn.Dropout()
b = dropout(a)
print(b)
"""
tensor([[ 2.5230, -0.0000, -0.0000,  2.5964],
        [ 0.0000,  0.0000, -0.0000, -0.0000],
        [ 0.0000, -0.0000,  1.1928, -0.3060],
        [ 0.0000, -0.7436,  0.0000, -3.1303]])
"""

由以上代码可知Dropout还可以将部分tensor中的值置为0

https://blog.csdn.net/weixin_47050107/article/details/122722516

相关推荐
智算菩萨7 小时前
未来家居可能的新变化:从“智能设备堆叠”到“自适应生活系统”
人工智能·生活
STLearner7 小时前
AAAI 2026 | 时空数据(Spatial-temporal)论文总结[下](自动驾驶,天气预报,城市科学,POI推荐等)
人工智能·python·深度学习·机器学习·数据挖掘·自动驾驶·智慧城市
后端小张7 小时前
【AI 学习】LangChain框架深度解析:从核心组件到企业级应用实战
java·人工智能·学习·langchain·tensorflow·gpt-3·ai编程
NAGNIP7 小时前
LongCat-Flash-Omni:美团的全模态大模型
人工智能
未来之窗软件服务7 小时前
幽冥大陆(六十二) 多数据库交叉链接系统Go语言—东方仙盟筑基期
数据库·人工智能·oracle·golang·数据库集群·仙盟创梦ide·东方仙盟
Coder个人博客8 小时前
三大DDS实现对比分析(CycloneDDS/Fast DDS/OpenDDS)
人工智能·自动驾驶·dds
郝学胜-神的一滴8 小时前
人工智能与机器学习:从理论到实践的技术全景
人工智能·python·程序人生·算法·机器学习
liangshanbo12158 小时前
AI给我的调理方案
人工智能·中医调理
算法与编程之美8 小时前
不同的优化器对分类精度的影响以及损失函数对分类精度的影响.
人工智能·算法·机器学习·分类·数据挖掘
Black蜡笔小新8 小时前
户外无电无网视频汇聚平台EasyCVR太阳能4G视频监控解决方案
人工智能