希尔贝壳与西湖大学音频信息与信号处理实验室联合发布的论文被国际顶级会议 NeurIPS 2024 录用

神经信息处理系统大会(Conference on Neural Information Processing Systems,NeurIPS)是中国计算机学会(CCF)推荐的人工智能领域 A 类学术会议,其 H5 指数高达 337,在 Google Scholar 的 AI 类出版物中排名第一,与 ICML 和 ICLR 并称为机器学习领域难度最高、影响力最大的"三大会议"。

今年的会议 NeurIPS 2024 将于 12 月 10 日至 15 日在加拿大温哥华的 Vancouver Convention Center 举行。大会总共收到了 15671 篇有效投稿,最终录用率为 25.8%。希尔贝壳西湖大学音频信息与信号处理实验室联合发布的论文成功入选。

RealMAN是由希尔贝壳(AISHELL)与西湖大学音频信息与信号处理实验室(AUDIOLAB)联合开源的一个规模较大、实录、带标注的多通道麦克风语音与噪声数据集(RealMAN)。

数据组成

RealMAN是一个面向动态声学场景语音增强与声源定位任务的麦克风阵列音频数据集。具体而言,该数据集使用32通道高精度麦克风阵列进行录音,使用扬声器播放语音源信号。总共包括32个场景下录制的语音信号83小时(其中48小时为静态扬声器,35小时为移动扬声器),31个场景下录制的背景噪声144小时。

数据说明

RealMAN语音和噪声录制场景覆盖了各种常见的室内、室外、半室外和交通环境。录音设备见图1。借助于全向鱼眼摄像机标注扬声器相较于麦克风阵列的水平角,该标注可用于声源定位网络的训练。使用估计得到的直达路径滤波器对播放的语音源信号进行滤波,进而得到直达路径信号,方便语音增强网络的训练。

实验结果

  • 相比模拟数据,使用RealMAN数据集能够训练出更好的语音增强和声源定位网络;

  • 使用32通道麦克风阵列组成的不同子阵列可以训练出直接用于未见阵列的变阵列网络。

相关推荐
CappuccinoRose12 小时前
MATLAB学习文档(二十四)
学习·数学建模·matlab·数据可视化
菜鸟‍12 小时前
【前端学习】仿Deepseek官网AI聊天网站React
前端·学习·react.js
今天只学一颗糖12 小时前
Linux学习笔记--GPIO子系统和PinCtrl子系统
linux·笔记·学习
lingggggaaaa12 小时前
小迪安全v2023学习笔记(一百三十四讲)—— Windows权限提升篇&数据库篇&MySQL&MSSQL&Oracle&自动化项目
java·数据库·windows·笔记·学习·安全·网络安全
StarPrayers.14 小时前
损失函数(Loss Function)、反向传播(Backward Propagation)和优化器(Optimizer)学习笔记
人工智能·笔记·深度学习·学习
涤生z16 小时前
list.
开发语言·数据结构·c++·学习·算法·list
励志不掉头发的内向程序员16 小时前
【Linux系列】掌控 Linux 的脉搏:深入理解进程控制
linux·运维·服务器·开发语言·学习
光影少年18 小时前
云计算生态及学习方向和就业领域方向
学习·云计算
好奇龙猫18 小时前
[AI学习:SPIN -win-安装SPIN-工具过程 SPIN win 电脑安装=accoda 环境-第四篇:代码修复]
人工智能·学习
luckyPian18 小时前
学习go语言
开发语言·学习·golang