Spark 的 Http Broadcast 和 Torrent Broadcast 广播实现类的对比

在 Apache Spark 中,广播机制用于高效地将小型只读数据分发到集群中的各个执行器(Executor)。Spark 中主要有两种不同的广播实现方式:Http BroadcastTorrent Broadcast。这两种方式的核心目标都是将数据高效地分发给所有工作节点,但它们在实现方式、效率和性能方面存在显著差异。以下是对这两种机制的详细对比:

1. 实现机制

  • Http Broadcast
    • Http Broadcast 是早期的广播机制,Spark 会在驱动节点上启动一个内嵌的 HTTP 服务器,并将广播的数据上传到该服务器。
    • 每个执行器在需要广播数据时,会通过 HTTP 请求从驱动程序的 HTTP 服务器下载数据。
    • 驱动程序充当单一数据源,所有执行器从该源获取广播数据。
  • Torrent Broadcast
    • Torrent Broadcast 是 Spark 1.5 版本引入的默认广播机制,采用类似 BitTorrent 的分布式数据传输方式。
    • 驱动程序首先将广播数据分片成多个小块(chunks),这些块会首先发送给部分执行器。
    • 执行器在接收到数据块后,会同时处理这些数据块,并像种子一样,将数据块进一步分发给其他执行器。这种方式形成链式的广播,提高了并发性。
    • 每个执行器不仅仅从驱动获取数据,也可以从其他已经持有数据的执行器获取数据。

2. 效率与扩展性

  • Http Broadcast

    • 效率较低:由于每个执行器都必须从驱动节点的 HTTP 服务器下载广播数据,当集群规模较大时,驱动程序会成为瓶颈,导致广播的效率下降。驱动程序的带宽和计算资源都会受到限制,不能充分利用集群的带宽资源。
    • 可扩展性差:在大规模集群中,多个执行器同时从驱动程序下载数据时会产生高负载,驱动程序可能会因为过多的网络请求而过载。这种集中式的广播方式难以扩展到大型集群。
  • Torrent Broadcast

    • 高效并发传输:Torrent Broadcast 通过将数据分块,并在多个节点之间形成链式传播,显著提高了广播数据的并发传输效率。每个执行器不必都从驱动程序获取数据,可以从其他执行器获取数据块,从而减轻了驱动节点的负载。
    • 可扩展性强:由于数据传输是分布式的,不依赖于单一的驱动程序,Torrent Broadcast 在大规模集群中能够充分利用网络带宽资源,具备更好的扩展性。

3. 网络负载

  • Http Broadcast
    • 集中式负载:驱动程序承载了所有广播数据的下载请求,因此网络负载集中在驱动节点。网络传输压力集中在驱动程序与各执行器之间的网络链路,容易形成传输瓶颈。
  • Torrent Broadcast
    • 分布式负载:数据块通过多个节点以链式方式传播,网络负载分散在各个执行器之间。每个执行器既是数据的消费者也是数据的传播者,网络负载能够均匀分配,避免了集中式的网络瓶颈。

4. 容错性

  • Http Broadcast
    • 容错性低:如果驱动程序的 HTTP 服务器出现故障,所有广播数据的分发都将受到影响。此时,广播任务可能会失败,甚至导致作业无法完成。
  • Torrent Broadcast
    • 容错性强:由于 Torrent Broadcast 采用分布式传播方式,即使部分节点出现故障,其他节点仍可以继续传播数据。Spark 可以通过重试从其他节点获取数据块,从而具备更强的容错能力。

5. 驱动程序的负担

  • Http Broadcast
    • 驱动程序压力大:由于所有执行器都从驱动节点的 HTTP 服务器下载广播数据,随着集群规模的增长,驱动程序承受的负载会显著增加。
  • Torrent Broadcast
    • 驱动程序压力小:驱动程序只需要向一部分执行器发送数据块,之后这些执行器会承担起数据的传播工作。驱动节点的负载大大减轻,尤其是在大规模集群中表现尤为明显。

6. 使用场景

  • Http Broadcast
    • 适用于较小规模的集群和广播数据量较小的场景。在这些场景中,驱动程序的负载不会太重,且广播效率能够满足要求。
  • Torrent Broadcast
    • 适用于大规模集群和需要频繁广播大量数据的场景。Torrent Broadcast 能更好地利用集群的网络资源,减轻驱动节点的压力,提升整体广播效率。

7. 默认设置

  • Http Broadcast:在 Spark 1.5 版本之前,Spark 默认使用 Http Broadcast 作为广播机制。

  • Torrent Broadcast:自 Spark 1.5 起,Torrent Broadcast 成为默认的广播机制。该机制在大规模分布式计算环境中的性能要远远优于 Http Broadcast。

8. 性能对比

  • Http Broadcast
    • 延迟较高:由于所有执行器都从同一源获取数据,当执行器数量较多时,网络拥塞和等待时间会显著增加。
  • Torrent Broadcast
    • 延迟较低:通过分块并行传输,多个执行器可以同时接收不同的数据块,并相互之间传递数据,传输效率大大提升,延迟减少。

总结对比表

特性 Http Broadcast Torrent Broadcast
实现方式 中央化的 HTTP 服务器传输 分布式数据块传输,链式传播
效率 随着集群规模增大,效率迅速下降 高效并发,适合大规模集群
可扩展性 可扩展性差 可扩展性强,适合大型集群
网络负载 网络负载集中在驱动节点 网络负载分散在多个节点之间
容错性 容错性较差,驱动程序故障会导致广播失败 容错性强,部分节点故障不会影响整体传播
驱动程序负担 驱动程序负载较高 驱动程序负担轻,依赖分布式节点传播
适用场景 小规模集群和小数据集 大规模集群和频繁的大数据广播
Spark 默认方式 Spark 1.5 之前 Spark 1.5 之后

总结

  • Http Broadcast 是 Spark 早期采用的广播机制,它简单且适合小规模集群,但随着集群规模的增大,它的效率和可扩展性会显著下降。
  • Torrent Broadcast 是更现代的广播机制,通过分块并行传输、分布式传播和链式分发,大大提高了广播数据的传输效率,并且适用于大规模集群的场景。因此,自 Spark 1.5 起,Torrent Broadcast 成为了默认的广播机制。

在大规模分布式计算场景中,Torrent Broadcast 具有明显的性能优势,减少了驱动程序的负载,提升了广播的效率和容错性。

相关推荐
Data跳动4 小时前
Spark内存都消耗在哪里了?
大数据·分布式·spark
woshiabc1115 小时前
windows安装Elasticsearch及增删改查操作
大数据·elasticsearch·搜索引擎
lucky_syq6 小时前
Saprk和Flink的区别
大数据·flink
lucky_syq6 小时前
流式处理,为什么Flink比Spark Streaming好?
大数据·flink·spark
袋鼠云数栈6 小时前
深入浅出Flink CEP丨如何通过Flink SQL作业动态更新Flink CEP作业
大数据
小白学大数据7 小时前
如何使用Selenium处理JavaScript动态加载的内容?
大数据·javascript·爬虫·selenium·测试工具
15年网络推广青哥7 小时前
国际抖音TikTok矩阵运营的关键要素有哪些?
大数据·人工智能·矩阵
节点。csn8 小时前
Hadoop yarn安装
大数据·hadoop·分布式
arnold668 小时前
探索 ElasticSearch:性能优化之道
大数据·elasticsearch·性能优化
NiNg_1_2349 小时前
基于Hadoop的数据清洗
大数据·hadoop·分布式