Pytorch 实现图片分类

CNN 网络适用于图片识别,卷积神经网络主要用于图片的处理识别。卷积神经网络,包括一下几部分,输入层、卷积层、池化层、全链接层和输出层。

使用 CIFAR-10 进行训练, CIFAR-10 中图片尺寸为 32 * 32。卷积层通过卷积核移动进行计算最终生成特征图。

通过池化层进行降维度

卷积网络结构从输入到输出, 3* 32*32 --> 10:

类型 Weight BIAS
卷积(3, 12, 5) (12, 3, 5, 5) 12
卷积(12, 12, 5) (12, 12, 5, 5) 12
Norm 12 12
卷积(12, 24, 5) (24, 12, 5, 5) 24
卷积(24 24, 5) (24, 24, 5, 5) 24
Norm 24 24
Linear (10, 2400) 10

训练分类模型

准备数据
复制代码
from torchvision.datasets import CIFAR10
from torchvision.transforms import transforms
from torch.utils.data import DataLoader

# Loading and normalizing the data.
# Define transformations for the training and test sets
transformations = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])

# CIFAR10 dataset consists of 50K training images. We define the batch size of 10 to load 5,000 batches of images.
batch_size = 10
number_of_labels = 10 

# Create an instance for training. 
# When we run this code for the first time, the CIFAR10 train dataset will be downloaded locally. 
train_set =CIFAR10(root="./data",train=True,transform=transformations,download=True)

# Create a loader for the training set which will read the data within batch size and put into memory.
train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True, num_workers=0)
print("The number of images in a training set is: ", len(train_loader)*batch_size)

# Create an instance for testing, note that train is set to False.
# When we run this code for the first time, the CIFAR10 test dataset will be downloaded locally. 
test_set = CIFAR10(root="./data", train=False, transform=transformations, download=True)

# Create a loader for the test set which will read the data within batch size and put into memory. 
# Note that each shuffle is set to false for the test loader.
test_loader = DataLoader(test_set, batch_size=batch_size, shuffle=False, num_workers=0)
print("The number of images in a test set is: ", len(test_loader)*batch_size)

print("The number of batches per epoch is: ", len(train_loader))
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
创建网络
复制代码
import torch
import torch.nn as nn
import torchvision
import torch.nn.functional as F

# Define a convolution neural network
class Network(nn.Module):
    def __init__(self):
        super(Network, self).__init__()
        
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=1)
        self.bn1 = nn.BatchNorm2d(12)
        self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=1)
        self.bn2 = nn.BatchNorm2d(12)
        self.pool = nn.MaxPool2d(2,2)
        self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=1)
        self.bn4 = nn.BatchNorm2d(24)
        self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=1)
        self.bn5 = nn.BatchNorm2d(24)
        self.fc1 = nn.Linear(24*10*10, 10)

    def forward(self, input):
        output = F.relu(self.bn1(self.conv1(input)))      
        output = F.relu(self.bn2(self.conv2(output)))     
        output = self.pool(output)                        
        output = F.relu(self.bn4(self.conv4(output)))     
        output = F.relu(self.bn5(self.conv5(output)))     
        output = output.view(-1, 24*10*10)
        output = self.fc1(output)

        return output

# Instantiate a neural network model 
model = Network()

定义损失函数

使用交叉熵函数作为损失函数,交叉熵分为两种

  • 二分类交叉熵函数

  • 多分类交叉熵函数

    loss_fn = nn.CrossEntropyLoss()
    optimizer = Adam(model.parameters(), lr=0.001, weight_decay=0.0001)

模型训练
复制代码
from torch.autograd import Variable

# Function to save the model
def saveModel():
    path = "./myFirstModel.pth"
    torch.save(model.state_dict(), path)

# Function to test the model with the test dataset and print the accuracy for the test images
def testAccuracy():
    
    model.eval()
    accuracy = 0.0
    total = 0.0
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    
    with torch.no_grad():
        for data in test_loader:
            images, labels = data
            # run the model on the test set to predict labels
            outputs = model(images.to(device))
            # the label with the highest energy will be our prediction
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            accuracy += (predicted == labels.to(device)).sum().item()
    
    # compute the accuracy over all test images
    accuracy = (100 * accuracy / total)
    return(accuracy)


# Training function. We simply have to loop over our data iterator and feed the inputs to the network and optimize.
def train(num_epochs):
    
    best_accuracy = 0.0

    # Define your execution device
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    print("The model will be running on", device, "device")
    # Convert model parameters and buffers to CPU or Cuda
    model.to(device)

    for epoch in range(num_epochs):  # loop over the dataset multiple times
        running_loss = 0.0
        running_acc = 0.0

        for i, (images, labels) in enumerate(train_loader, 0):
            
            # get the inputs
            images = Variable(images.to(device))
            labels = Variable(labels.to(device))

            # zero the parameter gradients
            optimizer.zero_grad()
            # predict classes using images from the training set
            outputs = model(images)
            # compute the loss based on model output and real labels
            loss = loss_fn(outputs, labels)
            # backpropagate the loss
            loss.backward()
            # adjust parameters based on the calculated gradients
            optimizer.step()

            # Let's print statistics for every 1,000 images
            running_loss += loss.item()     # extract the loss value
            if i % 1000 == 999:    
                # print every 1000 (twice per epoch) 
                print('[%d, %5d] loss: %.3f' %
                      (epoch + 1, i + 1, running_loss / 1000))
                # zero the loss
                running_loss = 0.0

        # Compute and print the average accuracy fo this epoch when tested over all 10000 test images
        accuracy = testAccuracy()
        print('For epoch', epoch+1,'the test accuracy over the whole test set is %d %%' % (accuracy))
        
        # we want to save the model if the accuracy is the best
        if accuracy > best_accuracy:
            saveModel()
            best_accuracy = accuracy
测试模型
复制代码
import matplotlib.pyplot as plt
import numpy as np

# Function to show the images
def imageshow(img):
    img = img / 2 + 0.5     # unnormalize
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1, 2, 0)))
    plt.show()


# Function to test the model with a batch of images and show the labels predictions
def testBatch():
    # get batch of images from the test DataLoader  
    images, labels = next(iter(test_loader))

    # show all images as one image grid
    imageshow(torchvision.utils.make_grid(images))
   
    # Show the real labels on the screen 
    print('Real labels: ', ' '.join('%5s' % classes[labels[j]] 
                               for j in range(batch_size)))
  
    # Let's see what if the model identifiers the  labels of those example
    outputs = model(images)
    
    # We got the probability for every 10 labels. The highest (max) probability should be correct label
    _, predicted = torch.max(outputs, 1)
    
    # Let's show the predicted labels on the screen to compare with the real ones
    print('Predicted: ', ' '.join('%5s' % classes[predicted[j]] 
                              for j in range(batch_size)))
执行模型
复制代码
if __name__ == "__main__":
    
    # Let's build our model
    train(5)
    print('Finished Training')

    # Test which classes performed well
    testAccuracy()
    
    # Let's load the model we just created and test the accuracy per label
    model = Network()
    path = "myFirstModel.pth"
    model.load_state_dict(torch.load(path))

    # Test with batch of images
    testBatch()

总结

pytorch 搭建一个 CNN 模型比较简单,5 轮训练之后,效果就可以达到 60%,10 张图片中预测对了 6 张。

相关推荐
guanshiyishi2 小时前
ABeam 德硕 | 中国汽车市场(2)——新能源车的崛起与中国汽车市场机遇与挑战
人工智能
极客天成ScaleFlash2 小时前
极客天成NVFile:无缓存直击存储性能天花板,重新定义AI时代并行存储新范式
人工智能·缓存
澳鹏Appen3 小时前
AI安全:构建负责任且可靠的系统
人工智能·安全
蹦蹦跳跳真可爱5894 小时前
Python----机器学习(KNN:使用数学方法实现KNN)
人工智能·python·机器学习
视界宝藏库4 小时前
多元 AI 配音软件,打造独特音频体验
人工智能
xinxiyinhe5 小时前
GitHub上英语学习工具的精选分类汇总
人工智能·deepseek·学习英语精选
byxdaz5 小时前
PyTorch中Linear全连接层
pytorch
Start_Present5 小时前
Pytorch 第十二回:循环神经网络——LSTM模型
pytorch·rnn·神经网络·数据分析·lstm
ZStack开发者社区5 小时前
全球化2.0 | ZStack举办香港Partner Day,推动AIOS智塔+DeepSeek海外实践
人工智能·云计算
Spcarrydoinb6 小时前
基于yolo11的BGA图像目标检测
人工智能·目标检测·计算机视觉